BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9882044)

  • 1. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria.
    Thibault KL; Margulies SS
    J Biomech; 1998 Dec; 31(12):1119-26. PubMed ID: 9882044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic, regional mechanical properties of the porcine brain: indentation in the coronal plane.
    Elkin BS; Ilankova A; Morrison B
    J Biomech Eng; 2011 Jul; 133(7):071009. PubMed ID: 21823748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material characterization of the brainstem from oscillatory shear tests.
    Arbogast KB; Margulies SS
    J Biomech; 1998 Sep; 31(9):801-7. PubMed ID: 9802780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury.
    Margulies SS; Thibault KL
    J Biomech Eng; 2000 Aug; 122(4):364-71. PubMed ID: 11036559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive experimental study on material properties of human brain tissue.
    Jin X; Zhu F; Mao H; Shen M; Yang KH
    J Biomech; 2013 Nov; 46(16):2795-801. PubMed ID: 24112782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear linear behavior of brain tissue over a large frequency range.
    Nicolle S; Lounis M; Willinger R; Palierne JF
    Biorheology; 2005; 42(3):209-23. PubMed ID: 15894820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post-mortem time and sample preparation.
    Garo A; Hrapko M; van Dommelen JA; Peters GW
    Biorheology; 2007; 44(1):51-8. PubMed ID: 17502689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates.
    Li Z; Yang H; Wang G; Han X; Zhang S
    J Mech Behav Biomed Mater; 2019 Jan; 89():122-131. PubMed ID: 30268868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-frequency shear device for testing soft biological tissues.
    Arbogast KB; Thibault KL; Pinheiro BS; Winey KI; Margulies SS
    J Biomech; 1997 Jul; 30(7):757-9. PubMed ID: 9239559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic shear properties of porcine temporomandibular joint disc.
    Wu Y; Kuo J; Wright GJ; Cisewski SE; Wei F; Kern MJ; Yao H
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):156-63. PubMed ID: 25865544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of strain rate on indentation response of porcine brain.
    Qian L; Zhao H; Guo Y; Li Y; Zhou M; Yang L; Wang Z; Sun Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():210-217. PubMed ID: 29621688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.
    Zhao H; Yin Z; Li K; Liao Z; Xiang H; Zhu F
    Med Sci Monit Basic Res; 2016 Jan; 22():6-13. PubMed ID: 26790497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate- and Region-Dependent Mechanical Properties of Göttingen Minipig Brain Tissue in Simple Shear and Unconfined Compression.
    Boiczyk GM; Pearson N; Kote VB; Sundaramurthy A; Subramaniam DR; Rubio JE; Unnikrishnan G; Reifman J; Monson KL
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36524865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model.
    LaPlaca MC; Cullen DK; McLoughlin JJ; Cargill RS
    J Biomech; 2005 May; 38(5):1093-105. PubMed ID: 15797591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental research of mechanical behavior of porcine brain tissue under rotational shear stress.
    Li G; Zhang J; Wang K; Wang M; Gao C; Ma C
    J Mech Behav Biomed Mater; 2016 Apr; 57():224-34. PubMed ID: 26735181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent changes in material properties of the brain and braincase of the rat.
    Gefen A; Gefen N; Zhu Q; Raghupathi R; Margulies SS
    J Neurotrauma; 2003 Nov; 20(11):1163-77. PubMed ID: 14651804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex.
    Cloots RJ; Gervaise HM; van Dommelen JA; Geers MG
    Ann Biomed Eng; 2008 Jul; 36(7):1203-15. PubMed ID: 18465248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.