These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 9882090)

  • 41. An fMRI Study of the Ventriloquism Effect.
    Callan A; Callan D; Ando H
    Cereb Cortex; 2015 Nov; 25(11):4248-58. PubMed ID: 25577576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Auditory detection of motion velocity in humans: a magnetoencephalographic study.
    Xiang J; Daniel SJ; Ishii R; Holowka S; Harrison RV; Chuang S
    Brain Topogr; 2005; 17(3):139-49. PubMed ID: 15974473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing.
    Finlayson PG; Adam TJ
    Hear Res; 1997 Jan; 103(1-2):1-18. PubMed ID: 9007569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MEG language lateralization in partial epilepsy using dSPM of auditory event-related fields.
    Raghavan M; Li Z; Carlson C; Anderson CT; Stout J; Sabsevitz DS; Swanson SJ; Binder JR
    Epilepsy Behav; 2017 Aug; 73():247-255. PubMed ID: 28662463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A frontoparietal network for spatial attention reorienting in the auditory domain: a human fMRI/MEG study of functional and temporal dynamics.
    Brunetti M; Della Penna S; Ferretti A; Del Gratta C; Cianflone F; Belardinelli P; Caulo M; Pizzella V; Olivetti Belardinelli M; Romani GL
    Cereb Cortex; 2008 May; 18(5):1139-47. PubMed ID: 17720687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppression of irrelevant sounds during auditory working memory.
    Ahveninen J; Seidman LJ; Chang WT; Hämäläinen M; Huang S
    Neuroimage; 2017 Nov; 161():1-8. PubMed ID: 28818692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orienting asymmetries and lateralized processing of sounds in humans.
    Fischer J; Teufel C; Drolet M; Patzelt A; Rübsamen R; von Cramon DY; Schubotz RI
    BMC Neurosci; 2009 Feb; 10():14. PubMed ID: 19239700
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans.
    Kaiser J; Lutzenberger W
    Neurosci Lett; 2001 Nov; 314(1-2):17-20. PubMed ID: 11698136
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks.
    Anurova I; Artchakov D; Korvenoja A; Ilmoniemi RJ; Aronen HJ; Carlson S
    Clin Neurophysiol; 2005 Jul; 116(7):1644-54. PubMed ID: 15897006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages.
    Getzmann S
    Eur J Neurosci; 2011 Apr; 33(7):1339-50. PubMed ID: 21375597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human auditory cortical mechanisms of sound lateralisation: III. Monaural and binaural shift responses.
    Loveless N; Vasama JP; Mäkelä J; Hari R
    Hear Res; 1994 Dec; 81(1-2):91-9. PubMed ID: 7737933
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Temporal Cascade of Neural Processes Underlying Target Detection and Attentional Processing During Auditory Search.
    Gamble ML; Woldorff MG
    Cereb Cortex; 2015 Sep; 25(9):2456-65. PubMed ID: 24711486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response.
    Zhang F; Boettcher FA
    J Am Acad Audiol; 2008 Jan; 19(1):82-94. PubMed ID: 18637411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study.
    Collignon O; Davare M; Olivier E; De Volder AG
    Brain Topogr; 2009 May; 21(3-4):232-40. PubMed ID: 19199020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cortical processing of speech sounds and their analogues in a spatial auditory environment.
    Palomäki KJ; Tiitinen H; Mäkinen V; May P; Alku P
    Brain Res Cogn Brain Res; 2002 Aug; 14(2):294-9. PubMed ID: 12067702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings.
    Alho K; Winkler I; Escera C; Huotilainen M; Virtanen J; Jääskeläinen IP; Pekkonen E; Ilmoniemi RJ
    Psychophysiology; 1998 Mar; 35(2):211-24. PubMed ID: 9529947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decoding auditory spatial and emotional information encoding using multivariate versus univariate techniques.
    Kryklywy JH; Macpherson EA; Mitchell DGV
    Exp Brain Res; 2018 Apr; 236(4):945-953. PubMed ID: 29374776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.