These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 9882104)
1. P1 specificity of aqualysin I (a subtilisin-type serine protease) from Thermus aquaticus YT-1, using P1-substituted derivatives of Streptomyces subtilisin inhibitor. Tanaka T; Matsuzawa H; Kojima S; Kumagai I; Miura K; Ohta T Biosci Biotechnol Biochem; 1998 Oct; 62(10):2035-8. PubMed ID: 9882104 [TBL] [Abstract][Full Text] [Related]
2. Substrate Specificity of Aqualysin I, a Bacterial Thermophilic Alkaline Serine Protease from Thermus aquaticus YT-1: Comparison with Proteinase K, Subtilisin BPN' and Subtilisin Carlsberg. Tanaka T; Matsuzawa H; Ohta T Biosci Biotechnol Biochem; 1998; 62(11):2161-5. PubMed ID: 27393587 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1 and characteristics of the deduced primary structure of the enzyme. Kwon ST; Terada I; Matsuzawa H; Ohta T Eur J Biochem; 1988 May; 173(3):491-7. PubMed ID: 3286255 [TBL] [Abstract][Full Text] [Related]
4. Identification and designing of the S3 site of aqualysin I, a thermophilic subtilisin-related serine protease. Tanaka T; Matsuzawa H; Ohta T J Biochem; 1999 Jun; 125(6):1016-21. PubMed ID: 10348901 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of aqualysin I (a thermophilic alkaline serine protease) produced by Thermus aquaticus YT-1. Matsuzawa H; Tokugawa K; Hamaoki M; Mizoguchi M; Taguchi H; Terada I; Kwon ST; Ohta T Eur J Biochem; 1988 Feb; 171(3):441-7. PubMed ID: 3162211 [TBL] [Abstract][Full Text] [Related]
6. High-level expression, secretion, and purification of the thermostable aqualysin I from Thermus aquaticus YT-1 in Pichia pastoris. Oledzka G; Dabrowski S; Kur J Protein Expr Purif; 2003 Jun; 29(2):223-9. PubMed ID: 12767813 [TBL] [Abstract][Full Text] [Related]
7. Stability of Thermostable Enzyme, Aqualysin I ; a Subtilisin-type Serine Protease from Thermus aquaticus YT-1. Tanaka T; Matsuzawa H; Ohta T Biosci Biotechnol Biochem; 1998; 62(9):1806-8. PubMed ID: 27392689 [TBL] [Abstract][Full Text] [Related]
8. Determination of the positions of the disulfide bonds in aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1. Kwon ST; Matsuzawa H; Ohta T J Biochem; 1988 Oct; 104(4):557-9. PubMed ID: 3240997 [TBL] [Abstract][Full Text] [Related]
9. Role of disulphide bonds in a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1. Sakaguchi M; Takezawa M; Nakazawa R; Nozawa K; Kusakawa T; Nagasawa T; Sugahara Y; Kawakita M J Biochem; 2008 May; 143(5):625-32. PubMed ID: 18216068 [TBL] [Abstract][Full Text] [Related]
10. Substrate Specificity of Aqualysin I Altered by an Organic Solvent, DMSO. Tanaka T; Matsuzawa H; Ohta T Biosci Biotechnol Biochem; 1999; 63(2):446-8. PubMed ID: 27393070 [TBL] [Abstract][Full Text] [Related]
11. Unique precursor structure of an extracellular protease, aqualysin I, with NH2- and COOH-terminal pro-sequences and its processing in Escherichia coli. Terada I; Kwon ST; Miyata Y; Matsuzawa H; Ohta T J Biol Chem; 1990 Apr; 265(12):6576-81. PubMed ID: 2182621 [TBL] [Abstract][Full Text] [Related]
12. Weakly bound calcium ions involved in the thermostability of aqualysin I, a heat-stable subtilisin-type protease of Thermus aquaticus YT-1. Lin SJ; Yoshimura E; Sakai H; Wakagi T; Matsuzawa H Biochim Biophys Acta; 1999 Aug; 1433(1-2):132-8. PubMed ID: 10446366 [TBL] [Abstract][Full Text] [Related]
13. Role of the COOH-terminal pro-sequence of aqualysin I (a heat-stable serine protease) in its extracellular secretion by Thermus thermophilus. Kim DW; Lee YC; Matsuzawa H FEMS Microbiol Lett; 1997 Dec; 157(1):39-45. PubMed ID: 9418238 [TBL] [Abstract][Full Text] [Related]
14. Involvement of NH2-terminal pro-sequence in the production of active aqualysin I (a thermophilic serine protease) in Escherichia coli. Lee YC; Miyata Y; Terada I; Ohta T; Matsuzawa H Agric Biol Chem; 1991 Dec; 55(12):3027-32. PubMed ID: 1368764 [TBL] [Abstract][Full Text] [Related]
15. Application of a metal switch to aqualysin I, a subtilisin-type bacterial serine protease, to the S3 site residues, ser102 and gly131. Tanaka T; Kikuchi Y; Matsuzawa H; Ohta T Biosci Biotechnol Biochem; 2000 Sep; 64(9):2008-11. PubMed ID: 11055415 [TBL] [Abstract][Full Text] [Related]
17. Role of proline residues in conferring thermostability on aqualysin I. Sakaguchi M; Matsuzaki M; Niimiya K; Seino J; Sugahara Y; Kawakita M J Biochem; 2007 Feb; 141(2):213-20. PubMed ID: 17169970 [TBL] [Abstract][Full Text] [Related]
18. Increase of the protease activity of aqualysin I, a thermostable serine protease, by replacing Asn219 near the catalytic residue Ser222. Lin SJ; Kim DW; Ryugo Y; Wakagi T; Matsuzawa H Biosci Biotechnol Biochem; 1997 Apr; 61(4):718-9. PubMed ID: 9145532 [TBL] [Abstract][Full Text] [Related]
19. Requirement for the COOH-terminal pro-sequence in the translocation of aqualysin I across the cytoplasmic membrane in Escherichia coli. Kim DW; Matsuzawa H Biochem Biophys Res Commun; 2000 Oct; 277(1):216-20. PubMed ID: 11027666 [TBL] [Abstract][Full Text] [Related]
20. Primary structure and inhibitory properties of a subtilisin-chymotrypsin inhibitor from Streptomyces virginiae. Terabe M; Kojima S; Taguchi S; Momose H; Miura K Eur J Biochem; 1994 Dec; 226(2):627-32. PubMed ID: 8001578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]