These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9882447)

  • 1. Alkali metal ions protect mitochondrial rhodanese against thermal inactivation.
    Dionisi HM; Alvarez CV; Viale AM
    Arch Biochem Biophys; 1999 Jan; 361(2):202-6. PubMed ID: 9882447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial and cytosolic rhodanese from liver of DAB-treated mice. III. Inhibition kinetic studies.
    Vazquez E; Gazzaniga S; Polo C; Batlle A
    Cancer Biochem Biophys; 1997 Jun; 15(4):285-93. PubMed ID: 9224564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Crystallin facilitates the reactivation of hydrogen peroxide-inactivated rhodanese.
    Del Fierro D; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2000 Aug; 274(2):461-6. PubMed ID: 10913360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New crystalline derivatives of bovine liver rhodanese.
    Berni R; Cannella C; Monaco HL; Rossi GL
    Biochem Int; 1986 May; 12(5):733-40. PubMed ID: 3460592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures.
    Mendoza JA; Lorimer GH; Horowitz PM
    J Biol Chem; 1992 Sep; 267(25):17631-4. PubMed ID: 1355476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial and cytosolic rhodanese from liver of DAB treated mice. II. Some properties and spectral studies.
    Vazquez E; Polo C; Batlle AM
    Cancer Biochem Biophys; 1995 Jun; 15(1):55-63. PubMed ID: 8536221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An additional serine residue at the C terminus of rhodanese destabilizes the enzyme.
    Kramer G; Ramachandiran V; Horowitz P; Hardesty B
    Arch Biochem Biophys; 2001 Jan; 385(2):332-7. PubMed ID: 11368014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The differential functional stability of various forms of bovine liver rhodanese.
    Aird BA; Horowitz PM
    Biochim Biophys Acta; 1988 Aug; 956(1):30-8. PubMed ID: 3165676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally perturbed rhodanese can be protected from inactivation by self-association.
    Dungan JM; Horowitz PM
    J Protein Chem; 1993 Jun; 12(3):311-21. PubMed ID: 8397789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cAMP and some sulphur compounds upon the activity of mercaptopyruvate sulphurtransferase and rhodanese in mouse liver.
    Wróbel M; Frendo J
    Folia Biol (Krakow); 1992; 40(1-2):11-4. PubMed ID: 1333420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of Na,K-ATPase by ionic interactions.
    Fodor E; Fedosova NU; Ferencz C; Marsh D; Pali T; Esmann M
    Biochim Biophys Acta; 2008 Apr; 1778(4):835-43. PubMed ID: 18187035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial rhodanese: membrane-bound and complexed activity.
    Ogata K; Volini M
    J Biol Chem; 1990 May; 265(14):8087-93. PubMed ID: 2335518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver damage does not increase the sensitivity of mice to cyanide given acutely.
    Rutkowski JV; Roebuck BD; Smith RP
    Toxicology; 1986 Mar; 38(3):305-14. PubMed ID: 3952758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and partial purification of mitochondrial and cytosolic rhodanese from liver of normal and p-dimethylaminoazobenzene treated mice.
    Vazquez E; Polo C; Stedile G; Schebor C; Karahanian E; Batlle A
    Int J Biochem Cell Biol; 1995 May; 27(5):523-9. PubMed ID: 7641082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation.
    Horowitz PM; Bowman S
    J Biol Chem; 1989 Feb; 264(6):3311-6. PubMed ID: 2914953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase.
    Ebel C; Faou P; Kernel B; Zaccai G
    Biochemistry; 1999 Jul; 38(28):9039-47. PubMed ID: 10413477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.
    Owczarzy R; Moreira BG; You Y; Behlke MA; Walder JA
    Biochemistry; 2008 May; 47(19):5336-53. PubMed ID: 18422348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of RNA tertiary structure by monovalent cations.
    Shiman R; Draper DE
    J Mol Biol; 2000 Sep; 302(1):79-91. PubMed ID: 10964562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.