These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 9882606)

  • 1. Daily rhythms of food intake and feces reingestion in the degu, an herbivorous Chilean rodent: optimizing digestion through coprophagy.
    Kenagy GJ; Veloso C; Bozinovic F
    Physiol Biochem Zool; 1999; 72(1):78-86. PubMed ID: 9882606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum.
    Perissinotti PP; Antenucci CD; Zenuto R; Luna F
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Nov; 154(3):298-307. PubMed ID: 19497381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional responses to different diet quality in the subterranean rodent Ctenomys talarum (tuco-tucos).
    Martino NS; Zenuto RR; Busch C
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):974-82. PubMed ID: 17433887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in food assimilation, retention time and coprophagy allow herbivorous cavies (Microcavia australis) to cope with low food quality in the Monte desert.
    Sassi PL; Caviedes-Vidal E; Anton R; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Mar; 155(3):378-82. PubMed ID: 20026238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reingestion of feces in rodents and its daily rhythmicity.
    Kenagy GJ; Hoyt DF
    Oecologia; 1979 Jan; 44(3):403-409. PubMed ID: 28310297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coprophagy in animals: a review.
    Soave O; Brand CD
    Cornell Vet; 1991 Oct; 81(4):357-64. PubMed ID: 1954740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behaviors and nutritional importance of coprophagy in captive adult and young nutrias (Myocastor coypus).
    Takahashi T; Sakaguchi E
    J Comp Physiol B; 1998 May; 168(4):281-8. PubMed ID: 9646504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeding and digesting fiber and tannins by an herbivorous rodent, Octodon degus (Rodentia:Caviomorpha).
    Bozinovic F; Novoa FF; Sabat P
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):625-30. PubMed ID: 9406439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores.
    Clauss M; Schwarm A; Ortmann S; Streich WJ; Hummel J
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):249-65. PubMed ID: 17643330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation of glucocorticosteroids and testosterone to the annual cycle of free-living degus in semiarid central Chile.
    Kenagy GJ; Place NJ; Veloso C
    Gen Comp Endocrinol; 1999 Aug; 115(2):236-43. PubMed ID: 10417237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature cycles trigger nocturnalism in the diurnal homeotherm Octodon degus.
    Vivanco P; Rol MA; Madrid JA
    Chronobiol Int; 2010 May; 27(3):517-34. PubMed ID: 20524798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of more frequent and prolonged El Niño events on life-history parameters of the degu, a long-lived and slow-reproducing rodent.
    Previtali MA; Meserve PL; Kelt DA; Milstead WB; Gutierrez JR
    Conserv Biol; 2010 Feb; 24(1):18-28. PubMed ID: 20121838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstrating coprophagy with passage markers? The example of the plains viscacha (Lagostomus maximus).
    Clauss M; Besselmann D; Schwarm A; Ortmann S; Hatt JM
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):453-9. PubMed ID: 17331769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost of living in free-ranging degus (Octodon degus): seasonal dynamics of energy expenditure.
    Bozinovic F; Bacigalupe LD; Vásquez RA; Visser GH; Veloso C; Kenagy GJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Mar; 137(3):597-604. PubMed ID: 15123196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digestive and metabolic flexibility allows female degus to cope with lactation costs.
    Naya DE; Ebensperger LA; Sabat P; Bozinovic F
    Physiol Biochem Zool; 2008; 81(2):186-94. PubMed ID: 18190284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The time of day and the proportions of macronutrients eaten are related to total daily food intake.
    de Castro JM
    Br J Nutr; 2007 Nov; 98(5):1077-83. PubMed ID: 17537291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coprophagy in rabbits: autoingestion of hard feces.
    Ebino KY; Shutoh Y; Takahashi KW
    Jikken Dobutsu; 1993 Oct; 42(4):611-3. PubMed ID: 8253140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testicular hormones modulate circadian rhythms of the diurnal rodent, Octodon degus.
    Jechura TJ; Walsh JM; Lee TM
    Horm Behav; 2000 Dec; 38(4):243-9. PubMed ID: 11104642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic adjustments to increasing foraging costs of starlings in a closed economy.
    Wiersma P; Salomons HM; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4099-108. PubMed ID: 16244169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.