BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9882633)

  • 1. Structural characterization of human aryl sulphotransferases.
    Brix LA; Duggleby RG; Gaedigk A; McManus ME
    Biochem J; 1999 Jan; 337 ( Pt 2)(Pt 2):337-43. PubMed ID: 9882633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of two human sulphotransferase cDNAs that encode monoamine- and phenol-sulphating forms of phenol sulphotransferase: substrate kinetics, thermal-stability and inhibitor-sensitivity studies.
    Veronese ME; Burgess W; Zhu X; McManus ME
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):497-502. PubMed ID: 8093002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional characterisation of human sulfotransferases.
    Brix LA; Nicoll R; Zhu X; McManus ME
    Chem Biol Interact; 1998 Feb; 109(1-3):123-7. PubMed ID: 9566739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cDNA cloning and expression of a new form of human aryl sulfotransferase.
    Zhu X; Veronese ME; Iocco P; McManus ME
    Int J Biochem Cell Biol; 1996 May; 28(5):565-71. PubMed ID: 8697101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2.
    Goodfellow GH; Dupret JM; Grant DM
    Biochem J; 2000 May; 348 Pt 1(Pt 1):159-66. PubMed ID: 10794727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: site-directed mutagenesis and kinetic studies.
    Brix LA; Barnett AC; Duggleby RG; Leggett B; McManus ME
    Biochemistry; 1999 Aug; 38(32):10474-9. PubMed ID: 10441143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases.
    Hoch U; Zhang Z; Kroetz DL; Ortiz de Montellano PR
    Arch Biochem Biophys; 2000 Jan; 373(1):63-71. PubMed ID: 10620324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of conserved aromatic residues in the Gal/GalNAc-glycosyltransferase motif of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1.
    Tenno M; Saeki A; Elhammer AP; Kurosaka A
    FEBS J; 2007 Dec; 274(23):6037-45. PubMed ID: 17970754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of the active site loops of D-hydantoinase, a (beta/alpha)8-barrel protein, for modulation of the substrate specificity.
    Cheon YH; Park HS; Kim JH; Kim Y; Kim HS
    Biochemistry; 2004 Jun; 43(23):7413-20. PubMed ID: 15182184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function.
    Ridderström M; Masimirembwa C; Trump-Kallmeyer S; Ahlefelt M; Otter C; Andersson TB
    Biochem Biophys Res Commun; 2000 Apr; 270(3):983-7. PubMed ID: 10772937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid residue 247 in canine sulphotransferase SULT1D1: a new determinant of substrate selectivity.
    Tsoi C; Widersten M; Morgenstern R; Swedmark S
    Biochem J; 2004 Mar; 378(Pt 2):687-92. PubMed ID: 14614767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding.
    Kilka S; Erdmann F; Migdoll A; Fischer G; Weiwad M
    Biochemistry; 2009 Mar; 48(9):1900-10. PubMed ID: 19154138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases.
    Wang J; Pichersky E
    Arch Biochem Biophys; 1999 Aug; 368(1):172-80. PubMed ID: 10415125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of human UDP-glucuronosyltransferase UGT2B17 regio-specificity by a single amino acid substitution.
    Dubois SG; Beaulieu M; Lévesque E; Hum DW; Bélanger A
    J Mol Biol; 1999 May; 289(1):29-39. PubMed ID: 10339403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I.
    Labrou NE; Kotzia GA; Clonis YD
    Protein Eng Des Sel; 2004 Oct; 17(10):741-8. PubMed ID: 15556969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox control of aryl sulfotransferase specificity.
    Marshall AD; McPhie P; Jakoby WB
    Arch Biochem Biophys; 2000 Oct; 382(1):95-104. PubMed ID: 11051102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single residue determines the specificity of neutrophil elastase for Shigella virulence factors.
    Averhoff P; Kolbe M; Zychlinsky A; Weinrauch Y
    J Mol Biol; 2008 Apr; 377(4):1053-66. PubMed ID: 18295791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic characterization and interspecies difference of phenol sulfotransferases, ST1A forms.
    Honma W; Kamiyama Y; Yoshinari K; Sasano H; Shimada M; Nagata K; Yamazoe Y
    Drug Metab Dispos; 2001 Mar; 29(3):274-81. PubMed ID: 11181495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.