These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 9882641)
1. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. Lee RW; Robinson JJ; Cavanaugh CM J Exp Biol; 1999 Feb; 202 (Pt 3)():289-300. PubMed ID: 9882641 [TBL] [Abstract][Full Text] [Related]
2. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Liao L; Wankel SD; Wu M; Cavanaugh CM; Girguis PR Mol Ecol; 2014 Mar; 23(6):1544-1557. PubMed ID: 24237389 [TBL] [Abstract][Full Text] [Related]
3. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts. Lee RW; Childress JJ Appl Environ Microbiol; 1994 Jun; 60(6):1852-8. PubMed ID: 16349279 [TBL] [Abstract][Full Text] [Related]
4. DNA-DNA Solution Hybridization Studies of the Bacterial Symbionts of Hydrothermal Vent Tube Worms (Riftia pachyptila and Tevnia jerichonana). Edwards DB; Nelson DC Appl Environ Microbiol; 1991 Apr; 57(4):1082-8. PubMed ID: 16348457 [TBL] [Abstract][Full Text] [Related]
5. Fate of nitrate acquired by the tubeworm Riftia pachyptila. Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768 [TBL] [Abstract][Full Text] [Related]
6. Stimulatory effect of sulphide on thiotaurine synthesis in three hydrothermal-vent species from the East Pacific Rise. Pruski AM; Fiala-Médioni A J Exp Biol; 2003 Sep; 206(Pt 17):2923-30. PubMed ID: 12878661 [TBL] [Abstract][Full Text] [Related]
7. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Stahl DA; Lane DJ; Olsen GJ; Pace NR Science; 1984 Apr; 224(4647):409-11. PubMed ID: 17741220 [TBL] [Abstract][Full Text] [Related]
8. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Girguis PR; Childress JJ J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492 [TBL] [Abstract][Full Text] [Related]
9. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation. Breusing C; Xiao Y; Russell SL; Corbett-Detig RB; Li S; Sun J; Chen C; Lan Y; Qian PY; Beinart RA mSystems; 2023 Aug; 8(4):e0028423. PubMed ID: 37493648 [TBL] [Abstract][Full Text] [Related]
10. Insights into Symbiont Population Structure among Three Vestimentiferan Tubeworm Host Species at Eastern Pacific Spreading Centers. Perez M; Juniper SK Appl Environ Microbiol; 2016 Sep; 82(17):5197-205. PubMed ID: 27316954 [TBL] [Abstract][Full Text] [Related]
11. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Cary SC; Warren W; Anderson E; Giovannoni SJ Mol Mar Biol Biotechnol; 1993 Feb; 2(1):51-62. PubMed ID: 8364689 [TBL] [Abstract][Full Text] [Related]
12. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. Girguis PR; Childress JJ; Freytag JK; Klose K; Stuber R J Exp Biol; 2002 Oct; 205(Pt 19):3055-66. PubMed ID: 12200408 [TBL] [Abstract][Full Text] [Related]
13. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)--model systems for studies of symbiont-host adaptation. Stewart FJ; Cavanaugh CM Antonie Van Leeuwenhoek; 2006 Nov; 90(4):343-60. PubMed ID: 17028934 [TBL] [Abstract][Full Text] [Related]
14. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. Distel DL; Lane DJ; Olsen GJ; Giovannoni SJ; Pace B; Pace NR; Stahl DA; Felbeck H J Bacteriol; 1988 Jun; 170(6):2506-10. PubMed ID: 3286609 [TBL] [Abstract][Full Text] [Related]
15. CO2 uptake and fixation by endosymbiotic chemoautotrophs from the bivalve Solemya velum. Scott KM; Cavanaugh CM Appl Environ Microbiol; 2007 Feb; 73(4):1174-9. PubMed ID: 17158613 [TBL] [Abstract][Full Text] [Related]
16. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. Dmytrenko O; Russell SL; Loo WT; Fontanez KM; Liao L; Roeselers G; Sharma R; Stewart FJ; Newton IL; Woyke T; Wu D; Lang JM; Eisen JA; Cavanaugh CM BMC Genomics; 2014 Oct; 15():924. PubMed ID: 25342549 [TBL] [Abstract][Full Text] [Related]
17. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. Robidart JC; Roque A; Song P; Girguis PR PLoS One; 2011; 6(7):e21692. PubMed ID: 21779334 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148 [TBL] [Abstract][Full Text] [Related]
19. Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi. Cary SC Mol Mar Biol Biotechnol; 1994 Jun; 3(3):121-30. PubMed ID: 7921044 [TBL] [Abstract][Full Text] [Related]
20. Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube worm Riftia pachyptila. Minic Z; Simon V; Penverne B; Gaill F; Hervé G J Biol Chem; 2001 Jun; 276(26):23777-84. PubMed ID: 11306586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]