BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9882661)

  • 21. Proofreading and secondary structure processing determine the orientation dependence of CAG x CTG trinucleotide repeat instability in Escherichia coli.
    Zahra R; Blackwood JK; Sales J; Leach DR
    Genetics; 2007 May; 176(1):27-41. PubMed ID: 17339223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations produced by DNA polymerase III holoenzyme of Escherichia coli after in vitro synthesis in the absence of single-strand binding protein.
    Carraway M; Rewinski C; Marinus MG
    Mol Microbiol; 1990 Oct; 4(10):1645-52. PubMed ID: 1963919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of a dnaE mutation which enhances RecA-independent homologous recombination in the Escherichia coli chromosome.
    Bierne H; Vilette D; Ehrlich SD; Michel B
    Mol Microbiol; 1997 Jun; 24(6):1225-34. PubMed ID: 9218771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methyl-directed mismatch repair is bidirectional.
    Cooper DL; Lahue RS; Modrich P
    J Biol Chem; 1993 Jun; 268(16):11823-9. PubMed ID: 8389365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. xni-deficient Escherichia coli are proficient for recombination and multiple pathways of repair.
    Lombardo MJ; Aponyi I; Ray MP; Sandigursky M; Franklin WA; Rosenberg SM
    DNA Repair (Amst); 2003 Nov; 2(11):1175-83. PubMed ID: 14599740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient extension of slipped DNA intermediates by DinB is required to escape primer template realignment by DnaQ.
    Foti JJ; Walker GC
    J Bacteriol; 2011 May; 193(10):2637-41. PubMed ID: 21421753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of primary and secondary DNA structure in deletion and duplication between direct repeats in Escherichia coli.
    Trinh TQ; Sinden RR
    Genetics; 1993 Jun; 134(2):409-22. PubMed ID: 8325478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands.
    Rosche WA; Trinh TQ; Sinden RR
    J Bacteriol; 1995 Aug; 177(15):4385-91. PubMed ID: 7635823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency.
    Canceill D; Viguera E; Ehrlich SD
    J Biol Chem; 1999 Sep; 274(39):27481-90. PubMed ID: 10488082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RecA-independent recombination is efficient but limited by exonucleases.
    Dutra BE; Sutera VA; Lovett ST
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):216-21. PubMed ID: 17182742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The roles of mutS, sbcCD and recA in the propagation of TGG repeats in Escherichia coli.
    Pan X; Leach DR
    Nucleic Acids Res; 2000 Aug; 28(16):3178-84. PubMed ID: 10931934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits.
    Maki H; Kornberg A
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4389-92. PubMed ID: 3037519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in vitro approach to identifying specificity determinants of mutagenesis mediated by DNA misalignments.
    Papanicolaou C; Ripley LS
    J Mol Biol; 1991 Oct; 221(3):805-21. PubMed ID: 1942031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primer-template misalignments during leading strand DNA synthesis account for the most frequent spontaneous mutations in a quasipalindromic region in Escherichia coli.
    Rosche WA; Ripley LS; Sinden RR
    J Mol Biol; 1998 Dec; 284(3):633-46. PubMed ID: 9826504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymerase-specific differences in the DNA intermediates of frameshift mutagenesis. In vitro synthesis errors of Escherichia coli DNA polymerase I and its large fragment derivative.
    Papanicolaou C; Ripley LS
    J Mol Biol; 1989 May; 207(2):335-53. PubMed ID: 2666674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity and tolerance mechanisms for azidothymidine, a replication gap-promoting agent, in Escherichia coli.
    Cooper DL; Lovett ST
    DNA Repair (Amst); 2011 Mar; 10(3):260-70. PubMed ID: 21145792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo.
    Motamedi MR; Szigety SK; Rosenberg SM
    Genes Dev; 1999 Nov; 13(21):2889-903. PubMed ID: 10557215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli.
    Courcelle J; Hanawalt PC
    Mol Gen Genet; 1999 Oct; 262(3):543-51. PubMed ID: 10589843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-correcting mismatches during high-fidelity DNA replication.
    Fernandez-Leiro R; Conrad J; Yang JC; Freund SM; Scheres SH; Lamers MH
    Nat Struct Mol Biol; 2017 Feb; 24(2):140-143. PubMed ID: 28067916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fidelity and error specificity of the alpha catalytic subunit of Escherichia coli DNA polymerase III.
    Mo JY; Schaaper RM
    J Biol Chem; 1996 Aug; 271(31):18947-53. PubMed ID: 8702558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.