BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9882957)

  • 1. Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel-fibered bones.
    Remaggi F; Canè V; Palumbo C; Ferretti M
    Ital J Anat Embryol; 1998; 103(4):145-55. PubMed ID: 9882957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. II. Parallel-fibered and lamellar bones.
    Ferretti M; Muglia MA; Remaggi F; Canè V; Palumbo C
    Ital J Anat Embryol; 1999; 104(3):121-31. PubMed ID: 10575824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of bone permeability using accurate microstructural measurements.
    Beno T; Yoon YJ; Cowin SC; Fritton SP
    J Biomech; 2006; 39(13):2378-87. PubMed ID: 16176815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histomorphometric assessment of Haversian canal and osteocyte lacunae in different-sized osteons in human rib.
    Qiu S; Fyhrie DP; Palnitkar S; Rao DS
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jun; 272(2):520-5. PubMed ID: 12740946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network.
    Schneider P; Meier M; Wepf R; Müller R
    Bone; 2010 Nov; 47(5):848-58. PubMed ID: 20691297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lacuno-canalicular system (LCS) and osteocyte network of alveolar bone by confocal laser scanning microscopy (CLSM).
    Bozal CB; Sánchez LM; Ubios AM
    Acta Odontol Latinoam; 2012; 25(1):123-31. PubMed ID: 22928392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodological assessment of acid-etching for visualizing the osteocyte lacunar-canalicular networks using scanning electron microscopy.
    Kubek DJ; Gattone VH; Allen MR
    Microsc Res Tech; 2010 Mar; 73(3):182-6. PubMed ID: 19725069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coalignment of osteocyte canaliculi and collagen fibers in human osteonal bone.
    Repp F; Kollmannsberger P; Roschger A; Berzlanovich A; Gruber GM; Roschger P; Wagermaier W; Weinkamer R
    J Struct Biol; 2017 Sep; 199(3):177-186. PubMed ID: 28778734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?
    Vatsa A; Breuls RG; Semeins CM; Salmon PL; Smit TH; Klein-Nulend J
    Bone; 2008 Sep; 43(3):452-8. PubMed ID: 18625577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphological association between microcracks and osteocyte lacunae in human cortical bone.
    Qiu S; Rao DS; Fyhrie DP; Palnitkar S; Parfitt AM
    Bone; 2005 Jul; 37(1):10-5. PubMed ID: 15878702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species.
    Mullender MG; Huiskes R; Versleyen H; Buma P
    J Orthop Res; 1996 Nov; 14(6):972-9. PubMed ID: 8982141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging resin-cast osteocyte lacuno-canalicular system at bone-bioactive glass interface by scanning electron microscopy.
    Gorustovich AA
    Microsc Microanal; 2010 Apr; 16(2):132-6. PubMed ID: 20187991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen texture and osteocyte distribution in lamellar bone.
    Marotti G; Muglia MA; Palumbo C
    Ital J Anat Embryol; 1995; 100 Suppl 1():95-102. PubMed ID: 11322346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density--is there a role for mechanosensing?
    van Hove RP; Nolte PA; Vatsa A; Semeins CM; Salmon PL; Smit TH; Klein-Nulend J
    Bone; 2009 Aug; 45(2):321-9. PubMed ID: 19398046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture of the osteocyte network correlates with bone material quality.
    Kerschnitzki M; Kollmannsberger P; Burghammer M; Duda GN; Weinkamer R; Wagermaier W; Fratzl P
    J Bone Miner Res; 2013 Aug; 28(8):1837-45. PubMed ID: 23494896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement, variation, and scaling of osteocyte lacunae: a case study in birds.
    D'Emic MD; Benson RB
    Bone; 2013 Nov; 57(1):300-10. PubMed ID: 23954754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic pathways of the fossil dinosaur bones. Part V. Morphological differentiation of osteocyte lacunae and bone canaliculi and their significance in the system of extracellular communication.
    Pawlicki R
    Folia Histochem Cytobiol; 1985; 23(3):165-74. PubMed ID: 4065383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The shape modulation of osteoblast-osteocyte transformation and its correlation with the fibrillar organization in secondary osteons: a SEM study employing the graded osmic maceration technique.
    Pazzaglia UE; Congiu T; Marchese M; Dell'Orbo C
    Cell Tissue Res; 2010 Jun; 340(3):533-40. PubMed ID: 20424862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sexual dimorphism and age dependence of osteocyte lacunar density for human vertebral cancellous bone.
    Vashishth D; Gibson GJ; Fyhrie DP
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Feb; 282(2):157-62. PubMed ID: 15627986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteocyte dendrogenesis in static and dynamic bone formation: an ultrastructural study.
    Palumbo C; Ferretti M; Marotti G
    Anat Rec A Discov Mol Cell Evol Biol; 2004 May; 278(1):474-80. PubMed ID: 15103743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.