BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9883740)

  • 1. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation.
    Seal RP; Amara SG
    Neuron; 1998 Dec; 21(6):1487-98. PubMed ID: 9883740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway.
    Hussainzada N; Banerjee A; Swaan PW
    Mol Pharmacol; 2006 Nov; 70(5):1565-74. PubMed ID: 16899538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology.
    Grunewald M; Bendahan A; Kanner BI
    Neuron; 1998 Sep; 21(3):623-32. PubMed ID: 9768848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine Scanning Mutagenesis of TM4b-4c Loop of Glutamate Transporter EAAT1 Reveals Three Conformationally Sensitive Residues.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2018 Jul; 94(1):713-721. PubMed ID: 29654220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural rearrangements at the translocation pore of the human glutamate transporter, EAAT1.
    Leighton BH; Seal RP; Watts SD; Skyba MO; Amara SG
    J Biol Chem; 2006 Oct; 281(40):29788-96. PubMed ID: 16877378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods.
    Cao W; Matherly LH
    Biochem J; 2003 Aug; 374(Pt 1):27-36. PubMed ID: 12749765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate.
    Grunewald M; Kanner BI
    J Biol Chem; 2000 Mar; 275(13):9684-9. PubMed ID: 10734120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop.
    Slotboom DJ; Sobczak I; Konings WN; Lolkema JS
    Proc Natl Acad Sci U S A; 1999 Dec; 96(25):14282-7. PubMed ID: 10588697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter.
    Zhang Y; Kanner BI
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1710-5. PubMed ID: 9990089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines.
    Seal RP; Leighton BH; Amara SG
    Neuron; 2000 Mar; 25(3):695-706. PubMed ID: 10774736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that TM VIII faces an aqueous channel.
    Winkler HH; Daugherty RM; Audia JP
    Biochemistry; 2003 Nov; 42(43):12562-9. PubMed ID: 14580202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of cell viability by histidine substitution of leucine 325 of the glutamate transporter EAAT1.
    Choi I; Chiu SY
    Biochem Biophys Res Commun; 2000 Aug; 275(2):382-5. PubMed ID: 10964674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Na+/Ca2+ exchanger NCX1 has oppositely oriented reentrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca2+ affinity.
    Iwamoto T; Uehara A; Imanaga I; Shigekawa M
    J Biol Chem; 2000 Dec; 275(49):38571-80. PubMed ID: 10967097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate co-transporter.
    Pajor AM; Randolph KM
    J Biol Chem; 2005 May; 280(19):18728-35. PubMed ID: 15774465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2).
    Banerjee A; Ray A; Chang C; Swaan PW
    Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue.
    Zarbiv R; Grunewald M; Kavanaugh MP; Kanner BI
    J Biol Chem; 1998 Jun; 273(23):14231-7. PubMed ID: 9603927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conserved cysteine 7.38 residue is differentially accessible in the binding-site crevices of the mu, delta, and kappa opioid receptors.
    Xu W; Chen C; Huang P; Li J; de Riel JK; Javitch JA; Liu-Chen LY
    Biochemistry; 2000 Nov; 39(45):13904-15. PubMed ID: 11076532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic and potential cation-pi forces may guide the interaction of extracellular loop III with Na+ and bile acids for human apical Na+-dependent bile acid transporter.
    Banerjee A; Hussainzada N; Khandelwal A; Swaan PW
    Biochem J; 2008 Mar; 410(2):391-400. PubMed ID: 18028035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive ion fluxes and substrate binding domains of human glutamate transporters.
    Vandenberg RJ; Arriza JL; Amara SG; Kavanaugh MP
    J Biol Chem; 1995 Jul; 270(30):17668-71. PubMed ID: 7629063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates.
    Leighton BH; Seal RP; Shimamoto K; Amara SG
    J Biol Chem; 2002 Aug; 277(33):29847-55. PubMed ID: 12015317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.