These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 9884087)
1. Brain sites involved in the antinociceptive effect of bradykinin in rats. Couto LB; Corrêa FM; Pelá IR Br J Pharmacol; 1998 Dec; 125(7):1578-84. PubMed ID: 9884087 [TBL] [Abstract][Full Text] [Related]
2. Descriptive and functional neuroanatomy of locus coeruleus-noradrenaline-containing neurons involvement in bradykinin-induced antinociception on principal sensory trigeminal nucleus. Couto LB; Moroni CR; dos Reis Ferreira CM; Elias-Filho DH; Parada CA; Pelá IR; Coimbra NC J Chem Neuroanat; 2006 Aug; 32(1):28-45. PubMed ID: 16678997 [TBL] [Abstract][Full Text] [Related]
3. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study. Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478 [TBL] [Abstract][Full Text] [Related]
4. Central B2 receptor involvement in the antinociceptive effect of bradykinin in rats. Pelá IR; Rosa AL; Silva CA; Huidobro-Toro JP Br J Pharmacol; 1996 Jul; 118(6):1488-92. PubMed ID: 8832076 [TBL] [Abstract][Full Text] [Related]
5. Effect of lidocaine administration at the nucleus locus coeruleus level on lateral hypothalamus-induced antinociception in the rat. Safari MS; Haghparast A; Semnanian S Pharmacol Biochem Behav; 2009 Jun; 92(4):629-34. PubMed ID: 19281839 [TBL] [Abstract][Full Text] [Related]
6. Bradykinin microinjection in the paratrigeminal nucleus triggers neuronal discharge in the rat rostroventrolateral reticular nucleus. Caous CA; Balan A; Lindsey CJ Can J Physiol Pharmacol; 2004 Jul; 82(7):485-92. PubMed ID: 15389295 [TBL] [Abstract][Full Text] [Related]
7. Central site of the hypertensive action of bradykinin. Corrêa FM; Graeff FG J Pharmacol Exp Ther; 1975 Mar; 192(3):670-6. PubMed ID: 1120963 [TBL] [Abstract][Full Text] [Related]
8. Role of glutamatergic receptors located in the nucleus raphe magnus on antinociceptive effect of morphine microinjected into the nucleus cuneiformis of rat. Haghparast A; Soltani-Hekmat A; Khani A; Komaki A Neurosci Lett; 2007 Oct; 427(1):44-9. PubMed ID: 17920194 [TBL] [Abstract][Full Text] [Related]
9. Pressor effect mediated by bradykinin in the paratrigeminal nucleus of the rat. Lindsey CJ; Buck HS; Fior-Chadi DR; Lapa RC J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):119-29. PubMed ID: 9234201 [TBL] [Abstract][Full Text] [Related]
10. Opioid mediation of the antiaversive and hyperalgesic actions of bradykinin injected into the dorsal periaqueductal gray of the rat. Burdin TA; Graeff FG; Pelá IR Physiol Behav; 1992 Sep; 52(3):405-10. PubMed ID: 1409899 [TBL] [Abstract][Full Text] [Related]
11. Localization of central pressor action of bradykinin in medulla oblongata. Fior DR; Martins DT; Lindsey CJ Am J Physiol; 1993 Sep; 265(3 Pt 2):H1000-6. PubMed ID: 8214105 [TBL] [Abstract][Full Text] [Related]
12. Dorsal raphe nucleus and locus coeruleus neural networks and the elaboration of the sweet-substance-induced antinociception. Kishi R; Bongiovanni R; de Nadai TR; Freitas RL; de Oliveira R; Ferreira CM; Coimbra NC Neurosci Lett; 2006 Feb; 395(1):12-7. PubMed ID: 16289556 [TBL] [Abstract][Full Text] [Related]
13. The periaqueductal gray is the site of the antinociceptive action of carbamazepine as related to bradykinin-induced trigeminal pain. Foong FW; Satoh M Br J Pharmacol; 1984 Oct; 83(2):493-7. PubMed ID: 6487904 [TBL] [Abstract][Full Text] [Related]
14. Antinociceptive mechanism of the aconitine alkaloids mesaconitine and benzoylmesaconine. Suzuki Y; Oyama T; Ishige A; Isono T; Asami A; Ikeda Y; Noguchi M; Omiya Y Planta Med; 1994 Oct; 60(5):391-4. PubMed ID: 7997462 [TBL] [Abstract][Full Text] [Related]
15. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome. de Oliveira RC; de Oliveira R; Ferreira CM; Coimbra NC Exp Neurol; 2006 Sep; 201(1):144-53. PubMed ID: 16842781 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Lane DA; Patel PA; Morgan MM Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660 [TBL] [Abstract][Full Text] [Related]
17. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats. Vazquez E; Hernandez N; Escobar W; Vanegas H Brain Res; 2005 Jun; 1048(1-2):211-7. PubMed ID: 15921664 [TBL] [Abstract][Full Text] [Related]
18. Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats. Tortorici V; Nogueira L; Aponte Y; Vanegas H Pain; 2004 Nov; 112(1-2):113-20. PubMed ID: 15494191 [TBL] [Abstract][Full Text] [Related]
19. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats. Hamurtekin E; Bagdas D; Gurun MS Neurosci Lett; 2007 Jun; 420(2):116-21. PubMed ID: 17531379 [TBL] [Abstract][Full Text] [Related]
20. Involvement of pre- and post-synaptic serotonergic receptors of dorsal raphe nucleus neural network in the control of the sweet-substance-induced analgesia in adult Rattus norvegicus (Rodentia, Muridae). Miyase CI; Kishi R; de Freitas RL; Paz DA; Coimbra NC Neurosci Lett; 2005 May; 379(3):169-73. PubMed ID: 15843057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]