These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9884187)

  • 1. Analytical techniques used to study the degradation of proteins and peptides: chemical instability.
    Reubsaet JL; Beijnen JH; Bult A; van Maanen RJ; Marchal JA; Underberg WJ
    J Pharm Biomed Anal; 1998 Sep; 17(6-7):955-78. PubMed ID: 9884187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical techniques used to study the degradation of proteins and peptides: physical instability.
    Reubsaet JL; Beijnen JH; Bult A; van Maanen RJ; Marchal JA; Underberg WJ
    J Pharm Biomed Anal; 1998 Sep; 17(6-7):979-84. PubMed ID: 9884188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins.
    Robinson AB; Rudd CJ
    Curr Top Cell Regul; 1974; 8(0):247-95. PubMed ID: 4371091
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and physical modification of proteins by the hydroxide ion.
    Whitaker JR; Feeney RE
    Crit Rev Food Sci Nutr; 1983; 19(3):173-212. PubMed ID: 6380954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical methods and formulation factors to enhance protein stability in solution.
    Jeong SH
    Arch Pharm Res; 2012 Nov; 35(11):1871-86. PubMed ID: 23212628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative rates of glutamine and asparagine deamidation in glucagon fragment 22-29 under acidic conditions.
    Joshi AB; Kirsch LE
    J Pharm Sci; 2002 Nov; 91(11):2331-45. PubMed ID: 12379918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway.
    Kim MK; Oh SJ; Lee BG; Song HK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12438-12443. PubMed ID: 27791147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of asparagine deamidation by isotope labeling and liquid chromatography coupled with mass spectrometry analysis.
    Liu H; Wang F; Xu W; May K; Richardson D
    Anal Biochem; 2013 Jan; 432(1):16-22. PubMed ID: 23017877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deamidation of specific glutamine residues from alpha-A crystallin during aging of the human lens.
    Takemoto L; Boyle D
    Biochemistry; 1998 Sep; 37(39):13681-5. PubMed ID: 9753455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses.
    Takemoto L; Boyle D
    Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband detection electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to reveal enzymatically and chemically induced deamidation reactions within peptides.
    Schmid DG; von der Mülbe FD; Fleckenstein B; Weinschenk T; Jung G
    Anal Chem; 2001 Dec; 73(24):6008-13. PubMed ID: 11791573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-acyl substituted 7-amino-4-chloroisocoumarin: a peptide degradation model via an imide mechanism.
    Garino C; Bihel F; Souard F; Quéléver G; Kraus JL
    Bioorg Med Chem Lett; 2004 Apr; 14(7):1771-4. PubMed ID: 15026068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a fluorescence microplate reader for the detection and characterization of metal-assisted peptide hydrolysis.
    Grant KB; Pattabhi S
    Anal Biochem; 2001 Feb; 289(2):196-201. PubMed ID: 11161313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation of human proteins.
    Robinson NE; Robinson AB
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12409-13. PubMed ID: 11606750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of degradation products formed during performic oxidation of peptides and proteins by high-performance liquid chromatography with matrix-assisted laser desorption/ionization and tandem mass spectrometry.
    Dai J; Zhang Y; Wang J; Li X; Lu Z; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2005; 19(9):1130-8. PubMed ID: 15799070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of process-related impurities and degradation products in larotaxel.
    Che X; Shen L; Xu H; Liu K
    J Pharm Biomed Anal; 2011 Jul; 55(5):1190-6. PubMed ID: 21530132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DETERMINATION OF C-TERMINAL ARGININE AND ASPARAGINE OF PROTEINS BY CATALYTIC HYDRAZINOLYSIS.
    KAWANISHI Y; IWAI K; ANDO T
    J Biochem; 1964 Oct; 56():314-24. PubMed ID: 14240982
    [No Abstract]   [Full Text] [Related]  

  • 20. Modification of citrulline residues with 2,3-butanedione facilitates their detection by liquid chromatography/mass spectrometry.
    De Ceuleneer M; De Wit V; Van Steendam K; Van Nieuwerburgh F; Tilleman K; Deforce D
    Rapid Commun Mass Spectrom; 2011 Jun; 25(11):1536-42. PubMed ID: 21594927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.