These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9884488)

  • 21. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain.
    Wearing SC; Smeathers JE; Yates B; Urry SR; Dubois P
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):397-402. PubMed ID: 19232452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of antipronation foot orthosis geometry on compression of heel and arch soft tissues.
    Sweeney D; Nester C; Preece S; Mickle K
    J Rehabil Res Dev; 2015; 52(5):543-51. PubMed ID: 26465089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The HPC-device: a method to quantify the heel pad shock absorbency.
    Jørgensen U; Larsen E; Varmarken JE
    Foot Ankle; 1989 Oct; 10(2):93-8. PubMed ID: 2807112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes.
    Chatzistergos PE; Naemi R; Sundar L; Ramachandran A; Chockalingam N
    J Diabetes Complications; 2014; 28(4):488-93. PubMed ID: 24795257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasonographic measurement of the mechanical properties of the sole under the metatarsal heads.
    Wang CL; Hsu TC; Shau YW; Shieh JY; Hsu KH
    J Orthop Res; 1999 Sep; 17(5):709-13. PubMed ID: 10569480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanical properties of the heel pad in elderly adults.
    Kinoshita H; Francis PR; Murase T; Kawai S; Ogawa T
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):404-9. PubMed ID: 8803499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanics of the heel pad for type 2 diabetic patients.
    Hsu TC; Lee YS; Shau YW
    Clin Biomech (Bristol, Avon); 2002 May; 17(4):291-6. PubMed ID: 12034122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of ultrasonography and radiography in assessment of the heel pad compressibility index of patients with plantar heel pain syndrome. Measurement of the fat pad in plantar heel pain syndrome.
    Uzel M; Cetinus E; Bilgic E; Ekerbicer H; Karaoguz A
    Joint Bone Spine; 2006 Mar; 73(2):196-9. PubMed ID: 16513397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heel pad thickness and athletic activity in healthy young adults: a sonographic study.
    Uzel M; Cetinus E; Ekerbicer HC; Karaoguz A
    J Clin Ultrasound; 2006 Jun; 34(5):231-6. PubMed ID: 16673365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of morphological and mechanical properties of plantar fascia and heel pad on balance performance in asymptomatic females.
    Taş S; Bek N
    Foot (Edinb); 2018 Sep; 36():30-34. PubMed ID: 30326350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in the mechanical characteristics of plantar soft tissue between ulcerated and non-ulcerated foot.
    Naemi R; Chatzistergos P; Sundar L; Chockalingam N; Ramachandran A
    J Diabetes Complications; 2016; 30(7):1293-9. PubMed ID: 27338509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship of the heel pad compressibility and plantar pressure distribution.
    Kanatli U; Yetkin H; Simsek A; Besli K; Ozturk A
    Foot Ankle Int; 2001 Aug; 22(8):662-5. PubMed ID: 11527028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of ultrasound imaging to measure midfoot plantar fat pad thickness in children.
    Riddiford-Harland DL; Steele JR; Baur LA
    J Orthop Sports Phys Ther; 2007 Oct; 37(10):644-7. PubMed ID: 17970412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigations on the viscoelastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis.
    Matteoli S; Fontanella CG; Carniel EL; Wilhjelm JE; Virga A; Corbinz N; Corvi A; Natali AN
    Proc Inst Mech Eng H; 2013 Mar; 227(3):334-42. PubMed ID: 23662350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.