These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9885185)

  • 1. Fermentation of milk permeate by proteolytic bacteria for protease production.
    Ali AA; Roushdy IM
    Appl Biochem Biotechnol; 1998 Aug; 74(2):85-93. PubMed ID: 9885185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.
    Pasotti L; Zucca S; Casanova M; Micoli G; Cusella De Angelis MG; Magni P
    BMC Biotechnol; 2017 Jun; 17(1):48. PubMed ID: 28577554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed cultures of Serratia marcescens and Kluyveromyces fragilis for simultaneous protease production and COD removal of whey.
    Ustáriz F; Laca A; García LA; Díaz M
    J Appl Microbiol; 2007 Oct; 103(4):864-70. PubMed ID: 17897188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor.
    Talabardon M; Schwitzguébel JP; Péringer P; Yang ST
    Biotechnol Prog; 2000; 16(6):1008-17. PubMed ID: 11101328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Growth kinetics and proteases production of Pseudomonas fluorescens in raw milk at refrigeration].
    Costa M; Gómez MF; Molina LH; Romero A
    Arch Latinoam Nutr; 2001 Dec; 51(4):371-5. PubMed ID: 12012563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of an extracellular proteinase-deficient strain of Pseudomonas fluorescens on milk and milk proteins.
    Torrie JP; Cholette H; Froehlich DA; McKellar RC
    J Dairy Res; 1983 Aug; 50(3):365-74. PubMed ID: 6413562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol.
    Coté A; Brown WA; Cameron D; van Walsum GP
    J Dairy Sci; 2004 Jun; 87(6):1608-20. PubMed ID: 15453474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentation of reconstituted skim milk supplemented with soy protein isolate by probiotic organisms.
    Pham TT; Shah NP
    J Food Sci; 2008 Mar; 73(2):M62-6. PubMed ID: 18298737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of single L-amino acids as sole source of carbon and nitrogen by bacteria.
    Halvorson H
    Can J Microbiol; 1972 Nov; 18(11):1647-50. PubMed ID: 4628671
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage.
    Rajmohan S; Dodd CE; Waites WM
    J Appl Microbiol; 2002; 93(2):205-13. PubMed ID: 12147068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm.
    Rao ChS; Sathish T; Mahalaxmi M; Laxmi GS; Rao RS; Prakasham RS
    J Appl Microbiol; 2008 Mar; 104(3):889-98. PubMed ID: 17953681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of response surface methodology in medium optimization for protease production by the new strain of Serratia marcescens SB08.
    Venil CK; Lakshmanaperumalsamy P
    Pol J Microbiol; 2009; 58(2):117-24. PubMed ID: 19824395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of proteases by psychrotrophic microorganisms.
    Kohlmann KL; Nielsen SS; Steenson LR; Ladisch MR
    J Dairy Sci; 1991 Oct; 74(10):3275-83. PubMed ID: 1744258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic thermophilic fermentation for acetic acid production from milk permeate.
    Talabardon M; Schwitzguébel JP; Péringer P
    J Biotechnol; 2000 Jan; 76(1):83-92. PubMed ID: 10784299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial proteases: production, isolation and utilization in animal nutrition.
    Michalík I; Szabová E; Poláková A; Urminská D
    Ukr Biokhim Zh (1978); 1997; 69(3):28-35. PubMed ID: 9505358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium.
    Vaningelgem F; Zamfir M; Adriany T; De Vuyst L
    J Appl Microbiol; 2004; 97(6):1257-73. PubMed ID: 15546417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them.
    Dufour D; Nicodème M; Perrin C; Driou A; Brusseaux E; Humbert G; Gaillard JL; Dary A
    Int J Food Microbiol; 2008 Jul; 125(2):188-96. PubMed ID: 18511140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular protease activity of different Pseudomonas strains: dependence of proteolytic activity on culture conditions.
    Nicodème M; Grill JP; Humbert G; Gaillard JL
    J Appl Microbiol; 2005; 99(3):641-8. PubMed ID: 16108806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological evaluation of stimulated growth of Listeria monocytogenes by Pseudomonas species in milk.
    Marshall DL; Schmidt RH
    Can J Microbiol; 1991 Aug; 37(8):594-9. PubMed ID: 1954572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.
    Do Carmo AP; De Oliveira MN; Da Silva DF; Castro SB; Borges AC; De Carvalho AF; De Moraes CA
    Benef Microbes; 2012 Mar; 3(1):23-32. PubMed ID: 22348906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.