These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9886088)

  • 1. Oxidative inactivation of brain alkaline phosphatase responsible for hydrolysis of phosphocholine.
    Sok DE
    J Neurochem; 1999 Jan; 72(1):355-62. PubMed ID: 9886088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative inactivation of brain ecto-5'-nucleotidase by thiols/Fe2+ system.
    Liu XW; Sok DE
    Neurochem Res; 2000 Nov; 25(11):1475-84. PubMed ID: 11071366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate-induced oxidative inactivation of Zn2+-glycerophosphocholine cholinephosphodiesterase.
    Sok DE
    J Neurochem; 1998 Mar; 70(3):1167-74. PubMed ID: 9489738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper ions and hypochlorite are mainly responsible for oxidative inactivation of paraoxon-hydrolyzing activity in human high density lipoprotein.
    Nguyen SD; Kim JR; Kim MR; Jung TS; Soka DE
    Toxicol Lett; 2004 Mar; 147(3):201-8. PubMed ID: 15104111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative inactivation of paraoxonase1, an antioxidant protein and its effect on antioxidant action.
    Nguyen SD; Sok DE
    Free Radic Res; 2003 Dec; 37(12):1319-30. PubMed ID: 14753756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Alkaline phosphatase in Amoeba proteus].
    Sopina VA
    Tsitologiia; 2005; 47(4):357-65. PubMed ID: 16706160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative inactivation of gastric peroxidase by site-specific generation of hydroxyl radical and its role in stress-induced gastric ulceration.
    Das D; Bandyopadhyay D; Banerjee RK
    Free Radic Biol Med; 1998 Feb; 24(3):460-9. PubMed ID: 9438559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T
    Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme inactivation by metal-catalyzed oxidation of coenzyme Q1.
    Mordente A; Martorana GE; Meucci E; Santini SA; Littarru GP
    Biochim Biophys Acta; 1992 Jun; 1100(3):235-41. PubMed ID: 1351746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation and inactivation of brain phosphocholine-phosphatase activity.
    Seo SK; Liu XW; Lee HJ; Kim HK; Kim MR; Sok DE
    Arch Pharm Res; 1999 Oct; 22(5):464-73. PubMed ID: 10549573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu2+-catalyzed oxidative degradation of thyroglobulin.
    Lee HJ; Sok DE
    Free Radic Res; 2000 Oct; 33(4):359-68. PubMed ID: 11022845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.
    Fujimoto S; Okano I; Tanaka Y; Sumida Y; Tsuda J; Kawakami N; Shimohama S
    Biol Pharm Bull; 1996 Jun; 19(6):882-5. PubMed ID: 8799493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of heart dihydrolipoamide dehydrogenase by copper Fenton systems. Effect of thiol compounds and metal chelators.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1995 Mar; 22(3):239-50. PubMed ID: 7757200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate.
    Rezende AA; Pizauro JM; Ciancaglini P; Leone FA
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):517-22. PubMed ID: 8042997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical vs. radical-induced oxidation.
    Sigler K; Gille G; Vacata V; Stadler N; Höfer M
    Folia Microbiol (Praha); 1998; 43(4):361-7. PubMed ID: 9821289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Saccharomyces cerevisiae PMA1 H+-ATPase inactivation by Fe2+, H2O2 and Fenton reagents.
    Stadler N; Höfer M; Sigler K
    Free Radic Res; 2001 Dec; 35(6):643-53. PubMed ID: 11811518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site of brain Zn2+-glycerophosphocholine cholinephosphodiesterase and regulation of enzyme activity.
    Sok DE
    Neurochem Res; 1998 Aug; 23(8):1061-7. PubMed ID: 9704595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties of purified Pseudomonas aeruginosa phosphorylcholine phosphatase indicated that this enzyme may be utilized by the bacteria to colonize in different environments.
    Salvano MA; Domenech CE
    Curr Microbiol; 1999 Jul; 39(1):1-8. PubMed ID: 10387109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanosoma rangeli: an alkaline ecto-phosphatase activity is involved with survival and growth of the parasite.
    Dos-Santos AL; Dick CF; Silveira TS; Fonseca-de-Souza AL; Meyer-Fernandes JR
    Exp Parasitol; 2013 Oct; 135(2):459-65. PubMed ID: 23994113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.