These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 9886659)
1. Analysis of the response of a pacemaker neuron model to transient inputs. Yamanobe T; Pakdaman K; Nomura T; Sato S Biosystems; 1998; 48(1-3):287-95. PubMed ID: 9886659 [TBL] [Abstract][Full Text] [Related]
2. Response of a pacemaker neuron model to stochastic pulse trains. Yamanobe T; Pakdaman K Biol Cybern; 2002 Feb; 86(2):155-66. PubMed ID: 11908841 [TBL] [Abstract][Full Text] [Related]
3. Simulation of phase-dependent pattern changes to perturbations of regular firing in crayfish stretch receptor. Hartline DK Brain Res; 1976 Jul; 110(2):245-57. PubMed ID: 938941 [TBL] [Abstract][Full Text] [Related]
4. Transients in the inhibitory driving of neurons and their postsynaptic consequences. Segundo JP; Stiber M; Altshuler E; Vibert JF Neuroscience; 1994 Sep; 62(2):459-80. PubMed ID: 7830892 [TBL] [Abstract][Full Text] [Related]
5. Testing a model of excitatory interactions between oscillators. Segundo JP; Diez Martínez O; Quijano H Biol Cybern; 1987; 55(6):355-66. PubMed ID: 3567239 [TBL] [Abstract][Full Text] [Related]
6. A Bonhoeffer-van der Pol oscillator model of locked and non-locked behaviors of living pacemaker neurons. Nomura T; Sato S; Doi S; Segundo JP; Stiber MD Biol Cybern; 1993; 69(5-6):429-37. PubMed ID: 8274541 [TBL] [Abstract][Full Text] [Related]
8. Periodically-modulated inhibition of living pacemaker neurons--III. The heterogeneity of the postsynaptic spike trains, and how control parameters affect it. Segundo JP; Vibert JF; Stiber M Neuroscience; 1998 Nov; 87(1):15-47. PubMed ID: 9722139 [TBL] [Abstract][Full Text] [Related]
9. Dynamic analysis of sensory-inhibitory interactions in crayfish stretch receptor neurons. Barrio LC; Buño W J Neurophysiol; 1990 Jun; 63(6):1508-19. PubMed ID: 2358889 [TBL] [Abstract][Full Text] [Related]
10. Action potential and sodium current in the slowly and rapidly adapting stretch receptor neurons of the crayfish (Astacus astacus). Purali N; Rydqvist B J Neurophysiol; 1998 Oct; 80(4):2121-32. PubMed ID: 9772266 [TBL] [Abstract][Full Text] [Related]
11. A simulation study of a neuron in a simple muscle control system. Liestøl K; Njå A; Walløe L Acta Physiol Scand; 1980 Aug; 109(4):463-72. PubMed ID: 6258393 [TBL] [Abstract][Full Text] [Related]
12. Analysis of models for crustacean stretch receptors. Takeuchi E; Yamanobe T; Pakdaman K; Sato S Biol Cybern; 2001 May; 84(5):349-63. PubMed ID: 11357548 [TBL] [Abstract][Full Text] [Related]
13. White noise analysis of pace-maker-response interactions and non-linearities in slowly adapting crayfish stretch receptor. Buño W; Bustamante J; Fuentes J J Physiol; 1984 May; 350():55-80. PubMed ID: 6747858 [TBL] [Abstract][Full Text] [Related]
14. Participation of voltage-gated conductances on the response succeeding inhibitory synaptic potentials in the crayfish slowly adapting stretch receptor neuron. Barrio LC; Araque A; Buño W J Neurophysiol; 1994 Sep; 72(3):1140-51. PubMed ID: 7528791 [TBL] [Abstract][Full Text] [Related]
15. Periodically modulated inhibition and its postsynaptic consequences--II. Influence of modulation slope, depth, range, noise and of postsynaptic natural discharges. Segundo JP; Stiber M; Vibert JF; Hanneton S Neuroscience; 1995 Oct; 68(3):693-719. PubMed ID: 8577367 [TBL] [Abstract][Full Text] [Related]
16. A mathematical model of the crustacean stretch receptor neuron. Biomechanics of the receptor muscle, mechanosensitive ion channels, and macrotransducer properties. Swerup C; Rydqvist B J Neurophysiol; 1996 Oct; 76(4):2211-20. PubMed ID: 8899596 [TBL] [Abstract][Full Text] [Related]