These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 9886761)
1. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide. Weisbrod RM; Griswold MC; Yaghoubi M; Komalavilas P; Lincoln TM; Cohen RA Br J Pharmacol; 1998 Dec; 125(8):1695-707. PubMed ID: 9886761 [TBL] [Abstract][Full Text] [Related]
2. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels. Mulè F; D'Angelo S; Serio R Br J Pharmacol; 1999 May; 127(2):514-20. PubMed ID: 10385253 [TBL] [Abstract][Full Text] [Related]
3. The effect of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and charybdotoxin (CTX) on relaxations of isolated cerebral arteries to nitric oxide. Onoue H; Katusic ZS Brain Res; 1998 Feb; 785(1):107-13. PubMed ID: 9526059 [TBL] [Abstract][Full Text] [Related]
4. Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea. Hwang TL; Wu CC; Teng CM Br J Pharmacol; 1998 Nov; 125(6):1158-63. PubMed ID: 9863642 [TBL] [Abstract][Full Text] [Related]
5. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Wu BN; Lin RJ; Lo YC; Shen KP; Wang CC; Lin YT; Chen IJ Br J Pharmacol; 2004 Aug; 142(7):1105-14. PubMed ID: 15237094 [TBL] [Abstract][Full Text] [Related]
6. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation. Eckly-Michel A; Martin V; Lugnier C Br J Pharmacol; 1997 Sep; 122(1):158-64. PubMed ID: 9298542 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of tolerance to sodium nitroprusside in rat cultured aortic smooth muscle cells. Papapetropoulos A; Go CY; Murad F; Catravas JD Br J Pharmacol; 1996 Jan; 117(1):147-55. PubMed ID: 8825356 [TBL] [Abstract][Full Text] [Related]
9. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation. Kruuse C; Rybalkin SD; Khurana TS; Jansen-Olesen I; Olesen J; Edvinsson L Eur J Pharmacol; 2001 May; 420(1):55-65. PubMed ID: 11412839 [TBL] [Abstract][Full Text] [Related]
10. Celecoxib dilates guinea-pig coronaries and rat aortic rings and amplifies NO/cGMP signaling by PDE5 inhibition. Klein T; Eltze M; Grebe T; Hatzelmann A; Kömhoff M Cardiovasc Res; 2007 Jul; 75(2):390-7. PubMed ID: 17383621 [TBL] [Abstract][Full Text] [Related]
11. Lack of effect of zaprinast on methacholine-induced contraction and inositol 1,4,5-trisphosphate accumulation in bovine tracheal smooth muscle. Chilvers ER; Giembycz MA; Challiss RA; Barnes BJ; Nahorski SR Br J Pharmacol; 1991 May; 103(1):1119-25. PubMed ID: 1652339 [TBL] [Abstract][Full Text] [Related]
12. Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade. Priviero FB; Teixeira CE; Toque HA; Claudino MA; Webb RC; De Nucci G; Zanesco A; Antunes E Clin Exp Pharmacol Physiol; 2006; 33(5-6):448-55. PubMed ID: 16700877 [TBL] [Abstract][Full Text] [Related]
13. KMUP-1 relaxes rabbit corpus cavernosum smooth muscle in vitro and in vivo: involvement of cyclic GMP and K(+) channels. Lin RJ; Wu BN; Lo YC; Shen KP; Lin YT; Huang CH; Chen IJ Br J Pharmacol; 2002 Mar; 135(5):1159-66. PubMed ID: 11877322 [TBL] [Abstract][Full Text] [Related]
14. Role of nitric oxide and guanosine 3',5'-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries. Liu SF; Crawley DE; Rohde JA; Evans TW; Barnes PJ Br J Pharmacol; 1992 Nov; 107(3):861-6. PubMed ID: 1335345 [TBL] [Abstract][Full Text] [Related]
15. YC-1 potentiates the nitric oxide/cyclic GMP pathway in corpus cavernosum and facilitates penile erection in rats. Hsieh GC; O'Neill AB; Moreland RB; Sullivan JP; Brioni JD Eur J Pharmacol; 2003 Jan; 458(1-2):183-9. PubMed ID: 12498924 [TBL] [Abstract][Full Text] [Related]
16. Involvement of guanylyl cyclase, protein kinase A and Na+ K+ ATPase in relaxations of bovine isolated bronchioles induced by GEA 3175, an NO donor. Elmedal Laursen B; Mulvany MJ; Simonsen U Pulm Pharmacol Ther; 2006; 19(3):179-88. PubMed ID: 16023394 [TBL] [Abstract][Full Text] [Related]
17. Development of human and rabbit vaginal smooth muscle cell cultures: effects of vasoactive agents on intracellular levels of cyclic nucleotides. Traish A; Moreland RB; Huang YH; Kim NN; Berman J; Goldstein I Mol Cell Biol Res Commun; 1999 Aug; 2(2):131-7. PubMed ID: 10542137 [TBL] [Abstract][Full Text] [Related]
18. Effects of a novel guanylate cyclase inhibitor on nitric oxide-dependent inhibitory neurotransmission in canine proximal colon. Franck H; Sweeney KM; Sanders KM; Shuttleworth CW Br J Pharmacol; 1997 Nov; 122(6):1223-9. PubMed ID: 9401790 [TBL] [Abstract][Full Text] [Related]
19. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP. Buxton IL; Kaiser RA; Malmquist NA; Tichenor S Br J Pharmacol; 2001 Sep; 134(1):206-14. PubMed ID: 11522613 [TBL] [Abstract][Full Text] [Related]
20. The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats. Reinke Y; Gross S; Eckerle LG; Hertrich I; Busch M; Busch R; Riad A; Rauch BH; Stasch JP; Dörr M; Felix SB Eur J Pharmacol; 2015 Nov; 767():1-9. PubMed ID: 26407652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]