BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9886774)

  • 1. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells.
    Dong F; Jiang J
    Chromosome Res; 1998 Nov; 6(7):551-8. PubMed ID: 9886774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase.
    Jin Q; Trelles-Sticken E; Scherthan H; Loidl J
    J Cell Biol; 1998 Apr; 141(1):21-9. PubMed ID: 9531545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleus: a highly organized but dynamic structure.
    Gonzalez-Melendi P; Beven A; Boudonck K; Abranches R; Wells B; Dolan L; Shaw P
    J Microsc; 2000 Jun; 198(Pt 3):199-207. PubMed ID: 10849198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase.
    Bass HW; Marshall WF; Sedat JW; Agard DA; Cande WZ
    J Cell Biol; 1997 Apr; 137(1):5-18. PubMed ID: 9105032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The architecture of interphase chromosomes and nucleolar transcription sites in plants.
    Shaw PJ; Abranches R; Paula Santos A; Beven AF; Stoger E; Wegel E; González-Melendi P
    J Struct Biol; 2002; 140(1-3):31-8. PubMed ID: 12490151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division.
    Berr A; Schubert I
    Genetics; 2007 Jun; 176(2):853-63. PubMed ID: 17409060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects and limitations of expansion microscopy in chromatin ultrastructure determination.
    Kubalová I; Schmidt Černohorská M; Huranová M; Weisshart K; Houben A; Schubert V
    Chromosome Res; 2020 Dec; 28(3-4):355-368. PubMed ID: 32939606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into chromatin compaction and spatial organization in rice interphase nuclei.
    Doležalová A; Beránková D; Koláčková V; Hřibová E
    Front Plant Sci; 2024; 15():1358760. PubMed ID: 38863533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intranuclear anchoring of repetitive DNA sequences: centromeres, telomeres, and ribosomal DNA.
    Weipoltshammer K; Schöfer C; Almeder M; Philimonenko VV; Frei K; Wachtler F; Hozák P
    J Cell Biol; 1999 Dec; 147(7):1409-18. PubMed ID: 10613900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei.
    Andrey P; Kiêu K; Kress C; Lehmann G; Tirichine L; Liu Z; Biot E; Adenot PG; Hue-Beauvais C; Houba-Hérin N; Duranthon V; Devinoy E; Beaujean N; Gaudin V; Maurin Y; Debey P
    PLoS Comput Biol; 2010 Jul; 6(7):e1000853. PubMed ID: 20628576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-random spatial organization of telomeres varies during the cell cycle and requires LAP2 and BAF.
    Keller D; Stinus S; Umlauf D; Gourbeyre E; Biot E; Olivier N; Mahou P; Beaurepaire E; Andrey P; Crabbe L
    iScience; 2024 Apr; 27(4):109343. PubMed ID: 38510147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear pore complex proteins are involved in centromere distribution.
    Ito N; Sakamoto T; Oko Y; Sato H; Hanamata S; Sakamoto Y; Matsunaga S
    iScience; 2024 Feb; 27(2):108855. PubMed ID: 38318384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward
    Ni L; Tian Z
    Mol Breed; 2023 Apr; 43(4):28. PubMed ID: 37313524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multigraph-Based Representation of Hi-C Data.
    Makai D; Cseh A; Sepsi A; Makai S
    Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step regulation of centromere distribution by condensin II and the nuclear envelope proteins.
    Sakamoto T; Sakamoto Y; Grob S; Slane D; Yamashita T; Ito N; Oko Y; Sugiyama T; Higaki T; Hasezawa S; Tanaka M; Matsui A; Seki M; Suzuki T; Grossniklaus U; Matsunaga S
    Nat Plants; 2022 Aug; 8(8):940-953. PubMed ID: 35915144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants.
    Zhou J; Liu Y; Guo X; Birchler JA; Han F; Su H
    Plant Biotechnol J; 2022 Nov; 20(11):2051-2063. PubMed ID: 35722725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 3D architecture of the pepper genome and its relationship to function and evolution.
    Liao Y; Wang J; Zhu Z; Liu Y; Chen J; Zhou Y; Liu F; Lei J; Gaut BS; Cao B; Emerson JJ; Chen C
    Nat Commun; 2022 Jun; 13(1):3479. PubMed ID: 35710823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions.
    Lysak MA
    Plant Cell; 2022 Jul; 34(7):2475-2491. PubMed ID: 35441689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years.
    Zhang X; Wang T
    Plant Cell Physiol; 2021 Dec; 62(11):1648-1661. PubMed ID: 34486654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding.
    Aguilar M; Prieto P
    Front Plant Sci; 2021; 12():672489. PubMed ID: 34149773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.