These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 9886821)
21. Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis. Scheenen WJ; Jenks BG; Willems PH; Roubos EW Pflugers Arch; 1994 Jun; 427(3-4):244-51. PubMed ID: 8072842 [TBL] [Abstract][Full Text] [Related]
22. Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor. Van Strien FJ; Roubos EW; Vaudry H; Jenks BG Endocrinology; 1996 Oct; 137(10):4298-307. PubMed ID: 8828489 [TBL] [Abstract][Full Text] [Related]
23. Melanotrope secretory cycle is regulated by physiological inputs via the hypothalamus. Vazquez-Martinez R; Castaño JP; Tonon MC; Vaudry H; Gracia-Navarro F; Malagon MM Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1039-46. PubMed ID: 12876074 [TBL] [Abstract][Full Text] [Related]
24. Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis. Leenders HJ; de Koning HP; Ponten SP; Jenks BG; Roubos EW Life Sci; 1993; 52(24):1969-75. PubMed ID: 8389412 [TBL] [Abstract][Full Text] [Related]
25. N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process. Verburg-van Kemenade BM; Jenks BG; Smits RJ Neuroendocrinology; 1987 Oct; 46(4):289-96. PubMed ID: 2823159 [TBL] [Abstract][Full Text] [Related]
26. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder. Itoh K; Washio Y; Fujinami Y; Shimizu D; Uji S; Yokoi H; Suzuki T Gen Comp Endocrinol; 2012 Apr; 176(2):215-21. PubMed ID: 22326352 [TBL] [Abstract][Full Text] [Related]
27. Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation. Dotman CH; van Herp F; Martens GJ; Jenks BG; Roubos EW J Endocrinol; 1998 Nov; 159(2):281-6. PubMed ID: 9795369 [TBL] [Abstract][Full Text] [Related]
29. Expression of three proopiomelanocortin subtype genes and mass spectrometric identification of POMC-derived peptides in pars distalis and pars intermedia of barfin flounder pituitary. Takahashi A; Amano M; Amiya N; Yamanome T; Yamamori K; Kawauchi H Gen Comp Endocrinol; 2006 Feb; 145(3):280-6. PubMed ID: 16242690 [TBL] [Abstract][Full Text] [Related]
30. Effect of serotonin on alpha-melanocyte-stimulating hormone secretion from perifused frog neurointermediate lobe: evidence for the presence of serotonin-containing cells in the frog pars intermedia. Lamacz M; Tonon MC; Leboulenger F; Héry F; Idres S; Verhofstad AJ; Pelletier G; Vaudry H J Endocrinol; 1989 Jul; 122(1):135-46. PubMed ID: 2549146 [TBL] [Abstract][Full Text] [Related]
31. Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis. Roubos EW; Berghs CA Cell Tissue Res; 1993 Dec; 274(3):587-96. PubMed ID: 8293450 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis. Ayoubi TA; Jenks BG; Roubos EW; Martens GJ Endocrinology; 1992 Jun; 130(6):3560-6. PubMed ID: 1597153 [TBL] [Abstract][Full Text] [Related]
33. [The intermediate lobe of the pituitary, model of neuroendocrine communication]. Lamacz M; Tonon MC; Louiset E; Cazin L; Vaudry H Arch Int Physiol Biochim Biophys; 1991 Jun; 99(3):205-19. PubMed ID: 1717055 [TBL] [Abstract][Full Text] [Related]
34. Secretory plasticity of pituitary cells: a mechanism of hormonal regulation. Gracia-Navarro F; Malagón MM; Castaño JP; García-Navarro S; Sánchez-Hormigo A; Luque RM; Peinado JR; Delgado E Arch Physiol Biochem; 2002 Apr; 110(1-2):106-12. PubMed ID: 11935407 [TBL] [Abstract][Full Text] [Related]
35. Catecholaminergic control of alpha-melanocyte-stimulating hormone (alpha MSH) release by frog neurointermediate lobe in vitro: evidence for direct stimulation of alpha MSH release by thyrotropin-releasing hormone. Tonon MC; Leroux P; Stoeckel ME; Jegou S; Pelletier G; Vaudry H Endocrinology; 1983 Jan; 112(1):133-41. PubMed ID: 6401174 [TBL] [Abstract][Full Text] [Related]
36. Expression of MCH and POMC genes in rainbow trout (Oncorhynchus mykiss) during ontogeny and in response to early physiological challenges. Suzuki M; Bennett P; Levy A; Baker BI Gen Comp Endocrinol; 1997 Sep; 107(3):341-50. PubMed ID: 9268615 [TBL] [Abstract][Full Text] [Related]
37. The pituitary-skin connection in amphibians. Reciprocal regulation of melanotrope cells and dermal melanocytes. Vaudry H; Chartrel N; Desrues L; Galas L; Kikuyama S; Mor A; Nicolas P; Tonon MC Ann N Y Acad Sci; 1999 Oct; 885():41-56. PubMed ID: 10816640 [TBL] [Abstract][Full Text] [Related]
38. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis. Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760 [TBL] [Abstract][Full Text] [Related]
39. Adenosine inhibits alpha-melanocyte-stimulating hormone release from frog pituitary melanotrophs. Evidence for the involvement of a(1) adenosine receptors negatively coupled to adenylate cyclase. Chartrel N; Tonon MC; Lamacz M; Vaudry H J Neuroendocrinol; 1992 Dec; 4(6):751-7. PubMed ID: 21554663 [TBL] [Abstract][Full Text] [Related]
40. A slow and a fast secretory compartment of POMC-derived peptides in the neurointermediate lobe of the amphibian Xenopus laevis. Van Zoest ID; Leenders HJ; Jenks BG; Roubos EW Comp Biochem Physiol C Comp Pharmacol Toxicol; 1990; 96(1):199-203. PubMed ID: 1980877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]