BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9886922)

  • 21. [Study of peritoneal water channel expression in rats].
    Hayakawa H
    Nihon Jinzo Gakkai Shi; 1996 Dec; 38(12):535-44. PubMed ID: 9014472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum.
    Stoenoiu MS; Ni J; Verkaeren C; Debaix H; Jonas JC; Lameire N; Verbavatz JM; Devuyst O
    J Am Soc Nephrol; 2003 Mar; 14(3):555-65. PubMed ID: 12595490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between peritoneal transport characteristics and messenger RNA expression of aquaporin in the peritoneal dialysis effluent of CAPD patients.
    Szeto CC; Lai KB; Chow KM; Szeto CY; Li PK
    J Nephrol; 2005; 18(2):197-203. PubMed ID: 15931648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fasting influences aquaporin expression, water transport and adipocyte metabolism in the peritoneal membrane.
    Costa IPD; Hautem N; Schiano G; Uchida S; Nishino T; Devuyst O
    Nephrol Dial Transplant; 2023 May; 38(6):1408-1420. PubMed ID: 36520078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water transport across the peritoneal membrane.
    Devuyst O; Rippe B
    Kidney Int; 2014 Apr; 85(4):750-8. PubMed ID: 23802191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered expression profile of transporters in the inner medullary collecting duct of aquaporin-1 knockout mice.
    Morris RG; Uchida S; Brooks H; Knepper MA; Chou CL
    Am J Physiol Renal Physiol; 2005 Jul; 289(1):F194-9. PubMed ID: 15713911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats.
    Carlsson O; Nielsen S; Zakaria el-R ; Rippe B
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2254-62. PubMed ID: 8997281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water and solute transport across the peritoneal membrane.
    Morelle J; Devuyst O
    Curr Opin Nephrol Hypertens; 2015 Sep; 24(5):434-43. PubMed ID: 26197201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of osmotic water transport in vivo using fluorescent albumin.
    Morelle J; Sow A; Vertommen D; Jamar F; Rippe B; Devuyst O
    Am J Physiol Renal Physiol; 2014 Oct; 307(8):F981-9. PubMed ID: 25100279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice.
    Schnermann J; Chou CL; Ma T; Traynor T; Knepper MA; Verkman AS
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9660-4. PubMed ID: 9689137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Endothelial Cell-Specific AQP1 Knockout Mice Confirm the Crucial Role of Endothelial AQP1 in Ultrafiltration during Peritoneal Dialysis.
    Zhang W; Freichel M; van der Hoeven F; Nawroth PP; Katus H; Kälble F; Zitron E; Schwenger V
    PLoS One; 2016; 11(1):e0145513. PubMed ID: 26760974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osmotic water permeability diversification in primary trophoblast cultures from aquaporin 1-deficient pregnant mice.
    Sha XY; Liu HS; Ma TH
    J Obstet Gynaecol Res; 2015 Sep; 41(9):1399-405. PubMed ID: 26014508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes.
    Yang B; Verkman AS
    J Biol Chem; 2002 Sep; 277(39):36782-6. PubMed ID: 12133842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water transport across biological membranes: Overton, water channels, and peritoneal dialysis.
    Devuyst O
    Bull Mem Acad R Med Belg; 2010; 165(5-6):250-5; discussion 256-8. PubMed ID: 21510484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney.
    Fang X; Yang B; Matthay MA; Verkman AS
    J Physiol; 2002 Jul; 542(Pt 1):63-9. PubMed ID: 12096051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice.
    Solenov EI; Vetrivel L; Oshio K; Manley GT; Verkman AS
    J Neurosci Methods; 2002 Jan; 113(1):85-90. PubMed ID: 11741725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0-9.
    Geyer RR; Musa-Aziz R; Qin X; Boron WF
    Am J Physiol Cell Physiol; 2013 May; 304(10):C985-94. PubMed ID: 23485707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aquaporin water channels and endothelial cell function.
    Verkman AS
    J Anat; 2002 Jun; 200(6):617-27. PubMed ID: 12162729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1.
    Oshio K; Watanabe H; Song Y; Verkman AS; Manley GT
    FASEB J; 2005 Jan; 19(1):76-8. PubMed ID: 15533949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aquaporin water channels and lung physiology.
    Verkman AS; Matthay MA; Song Y
    Am J Physiol Lung Cell Mol Physiol; 2000 May; 278(5):L867-79. PubMed ID: 10781416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.