BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9886937)

  • 1. Swelling activation of transport pathways in erythrocytes: effects of Cl-, ionic strength, and volume changes.
    Guizouarn H; Motais R
    Am J Physiol; 1999 Jan; 276(1):C210-20. PubMed ID: 9886937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Coordinated and Adjustable Osmolytes Movements Following Hyposmotic Swelling in Rainbow Trout Red Blood Cells.
    Maxime V
    Cell Physiol Biochem; 2021 Oct; 55(S1):185-195. PubMed ID: 34694072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swelling-activated K+ transport via two functionally distinct pathways in eel erythrocytes.
    Bursell JD; Kirk K
    Am J Physiol; 1996 Jan; 270(1 Pt 2):R61-70. PubMed ID: 8769785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling-activated K-Cl cotransport: metabolic dependence and inhibition by vanadate and fluoride.
    O'Neill WC
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C308-15. PubMed ID: 1847586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.
    De Franceschi L; Fumagalli L; Olivieri O; Corrocher R; Lowell CA; Berton G
    J Clin Invest; 1997 Jan; 99(2):220-7. PubMed ID: 9005990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling.
    Bergh C; Kelley SJ; Dunham PB
    J Membr Biol; 1990 Aug; 117(2):177-88. PubMed ID: 2213861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for the anion exchanger AE1 (band 3 protein) in cell volume regulation.
    Garcia-Romeu F; Borgese F; Guizouarn H; FiƩvet B; Motais R
    Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):985-94. PubMed ID: 8960775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume-sensitive KCl co-transport and taurine fluxes in horse red blood cells.
    Gibson JS; Ellory JC; Culliford SJ; Fincham DA
    Exp Physiol; 1993 Sep; 78(5):685-95. PubMed ID: 8240799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between hypotonically-induced taurine and K fluxes in trout red blood cells.
    Kiessling K; Ellory JC; Cossins AR
    Pflugers Arch; 2000 Jul; 440(3):467-75. PubMed ID: 10954334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ionic strength on the regulation of Na/H exchange and K-Cl cotransport in dog red blood cells.
    Parker JC; Dunham PB; Minton AP
    J Gen Physiol; 1995 Jun; 105(6):677-99. PubMed ID: 7561739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.
    Lauf PK; Adragna NC
    J Gen Physiol; 1996 Oct; 108(4):341-50. PubMed ID: 8894982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell volume regulation: the role of taurine loss in maintaining membrane potential and cell pH.
    Guizouarn H; Motais R; Garcia-Romeu F; Borgese F
    J Physiol; 2000 Feb; 523 Pt 1(Pt 1):147-54. PubMed ID: 10673551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K(+)-Cl- cotransport and volume regulation in the light and the dense fraction of high-K+ dog red blood cells.
    Fujise H; Abe K; Kamimura M; Ochiai H
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R991-8. PubMed ID: 9321878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory volume response of erythrocytes exposed to a gradual and slow decrease in medium osmolality.
    Godart H; Ellory JC; Motais R
    Pflugers Arch; 1999 Apr; 437(5):776-9. PubMed ID: 10087157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation transport in mouse erythrocytes: role of K(+)-Cl- cotransport in regulatory volume decrease.
    Armsby CC; Brugnara C; Alper SL
    Am J Physiol; 1995 Apr; 268(4 Pt 1):C894-902. PubMed ID: 7733237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low potassium-type but not high potassium-type sheep red blood cells show passive K+ transport induced by low ionic strength.
    Erdmann A; Bernhardt I; Pittman SJ; Ellory JC
    Biochim Biophys Acta; 1991 Jan; 1061(1):85-8. PubMed ID: 1995059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red cell volume regulation: the pivotal role of ionic strength in controlling swelling-dependent transport systems.
    Motais R; Guizouarn H; Garcia-Romeu F
    Biochim Biophys Acta; 1991 Oct; 1075(2):169-80. PubMed ID: 1657175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K-Cl cotransport, pH, and role of Mg in volume-clamped low-K sheep erythrocytes: three equilibrium states.
    Lauf PK; Erdmann A; Adragna NC
    Am J Physiol; 1994 Jan; 266(1 Pt 1):C95-103. PubMed ID: 8304434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte K-Cl cotransport: properties and regulation.
    Lauf PK; Bauer J; Adragna NC; Fujise H; Zade-Oppen AM; Ryu KH; Delpire E
    Am J Physiol; 1992 Nov; 263(5 Pt 1):C917-32. PubMed ID: 1443104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.