BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1603 related articles for article (PubMed ID: 9887101)

  • 1. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; Igarashi K; Engel JD; Yamamoto M
    Genes Dev; 1999 Jan; 13(1):76-86. PubMed ID: 9887101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.
    Katoh Y; Iida K; Kang MI; Kobayashi A; Mizukami M; Tong KI; McMahon M; Hayes JD; Itoh K; Yamamoto M
    Arch Biochem Biophys; 2005 Jan; 433(2):342-50. PubMed ID: 15581590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.
    Zipper LM; Mulcahy RT
    J Biol Chem; 2002 Sep; 277(39):36544-52. PubMed ID: 12145307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of the negative regulator of Nrf2, Keap1: a historical overview.
    Itoh K; Mimura J; Yamamoto M
    Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.
    Kang MI; Kobayashi A; Wakabayashi N; Kim SG; Yamamoto M
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2046-51. PubMed ID: 14764898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory mechanisms of cellular response to oxidative stress.
    Itoh K; Ishii T; Wakabayashi N; Yamamoto M
    Free Radic Res; 1999 Oct; 31(4):319-24. PubMed ID: 10517536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system.
    Kobayashi M; Itoh K; Suzuki T; Osanai H; Nishikawa K; Katoh Y; Takagi Y; Yamamoto M
    Genes Cells; 2002 Aug; 7(8):807-20. PubMed ID: 12167159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes.
    Karapetian RN; Evstafieva AG; Abaeva IS; Chichkova NV; Filonov GS; Rubtsov YP; Sukhacheva EA; Melnikov SV; Schneider U; Wanker EE; Vartapetian AB
    Mol Cell Biol; 2005 Feb; 25(3):1089-99. PubMed ID: 15657435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.
    Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M; Hasson T
    Mol Cell Biol; 2005 Jun; 25(11):4501-13. PubMed ID: 15899855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression.
    McMahon M; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2003 Jun; 278(24):21592-600. PubMed ID: 12682069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif.
    Li W; Jain MR; Chen C; Yue X; Hebbar V; Zhou R; Kong AN
    J Biol Chem; 2005 Aug; 280(31):28430-8. PubMed ID: 15917227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes.
    Kobayashi A; Ohta T; Yamamoto M
    Methods Enzymol; 2004; 378():273-86. PubMed ID: 15038975
    [No Abstract]   [Full Text] [Related]  

  • 16. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2004 Jul; 279(30):31556-67. PubMed ID: 15143058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD; Hannink M
    Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2-Keap1 defines a physiologically important stress response mechanism.
    Motohashi H; Yamamoto M
    Trends Mol Med; 2004 Nov; 10(11):549-57. PubMed ID: 15519281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation.
    Kobayashi M; Yamamoto M
    Antioxid Redox Signal; 2005; 7(3-4):385-94. PubMed ID: 15706085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 81.