BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 9887150)

  • 1. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury.
    Castro MJ; Apple DF; Staron RS; Campos GE; Dudley GA
    J Appl Physiol (1985); 1999 Jan; 86(1):350-8. PubMed ID: 9887150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface electrical stimulation of skeletal muscle after spinal cord injury.
    Hillegass EA; Dudley GA
    Spinal Cord; 1999 Apr; 37(4):251-7. PubMed ID: 10338344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of long-term muscle paralysis on human single fiber mechanics.
    Malisoux L; Jamart C; Delplace K; Nielens H; Francaux M; Theisen D
    J Appl Physiol (1985); 2007 Jan; 102(1):340-9. PubMed ID: 17038491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury.
    Castro MJ; Apple DF; Hillegass EA; Dudley GA
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):373-8. PubMed ID: 10483809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human and rat skeletal muscle adaptations to spinal cord injury.
    Gregory CM; Vandenborne K; Castro MJ; Dudley GA
    Can J Appl Physiol; 2003 Jun; 28(3):491-500. PubMed ID: 12955874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle fiber type-specific myofibrillar Ca(2+) ATPase activity after spinal cord injury.
    Castro MJ; Apple DF; Melton-Rogers S; Dudley GA
    Muscle Nerve; 2000 Jan; 23(1):119-21. PubMed ID: 10590416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of complete spinal cord injury on skeletal muscle mechanics within the first 6 months of injury.
    Castro MJ; Apple DF; Rogers S; Dudley GA
    Eur J Appl Physiol; 2000 Jan; 81(1-2):128-31. PubMed ID: 10552277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight.
    Edgerton VR; Zhou MY; Ohira Y; Klitgaard H; Jiang B; Bell G; Harris B; Saltin B; Gollnick PD; Roy RR
    J Appl Physiol (1985); 1995 May; 78(5):1733-9. PubMed ID: 7649906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrical stimulation leg training during the acute phase of spinal cord injury: a pilot study.
    Crameri RM; Weston AR; Rutkowski S; Middleton JW; Davis GM; Sutton JR
    Eur J Appl Physiol; 2000 Nov; 83(4 -5):409-15. PubMed ID: 11138583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of developmental changes in the coexpression of myosin heavy chains and metabolic properties of equine skeletal muscle fibers.
    Yamano S; Eto D; Kasashima Y; Hiraga A; Sugiura T; Miyata H
    Am J Vet Res; 2005 Mar; 66(3):401-5. PubMed ID: 15822582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of weight loss on muscle fiber type, fiber size, capillarity, and succinate dehydrogenase activity in humans.
    Kern PA; Simsolo RB; Fournier M
    J Clin Endocrinol Metab; 1999 Nov; 84(11):4185-90. PubMed ID: 10566670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes.
    Acevedo LM; Rivero JL
    Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging reduces succinate dehydrogenase activity in rat type IIx/IIb diaphragm muscle fibers.
    Fogarty MJ; Marin Mathieu N; Mantilla CB; Sieck GC
    J Appl Physiol (1985); 2020 Jan; 128(1):70-77. PubMed ID: 31774353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the skeletal muscle phenotype of equine motor neuron disease: a quantitative approach.
    Palencia P; Quiroz-Rothe E; Rivero JL
    Acta Neuropathol; 2005 Mar; 109(3):272-84. PubMed ID: 15616793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study.
    Hutchinson KJ; Linderman JK; Basso DM
    J Neurotrauma; 2001 Oct; 18(10):1075-89. PubMed ID: 11686494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular partitioning, architectural design, and myosin fiber types of the M. vastus lateralis of the llama (Lama glama).
    Graziotti GH; Palencia P; Delhon G; Rivero JL
    J Morphol; 2004 Nov; 262(2):667-81. PubMed ID: 15376272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle fibre type transformation following spinal cord injury.
    Burnham R; Martin T; Stein R; Bell G; MacLean I; Steadward R
    Spinal Cord; 1997 Feb; 35(2):86-91. PubMed ID: 9044514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractile properties and fiber type distribution of quadriceps muscles in adults with childhood-onset growth hormone deficiency.
    Bottinelli R; Narici M; Pellegrino MA; Kayser B; Canepari M; Faglia G; Sartorio A
    J Clin Endocrinol Metab; 1997 Dec; 82(12):4133-8. PubMed ID: 9398727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle characteristics of people with multiple sclerosis.
    Carroll CC; Gallagher PM; Seidle ME; Trappe SW
    Arch Phys Med Rehabil; 2005 Feb; 86(2):224-9. PubMed ID: 15706547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple means of increasing muscle size after spinal cord injury: a pilot study.
    Dudley GA; Castro MJ; Rogers S; Apple DF
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):394-6. PubMed ID: 10483812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.