These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9887153)

  • 1. Walking in simulated reduced gravity: mechanical energy fluctuations and exchange.
    Griffin TM; Tolani NA; Kram R
    J Appl Physiol (1985); 1999 Jan; 86(1):383-90. PubMed ID: 9887153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange.
    Gottschall JS; Kram R
    J Exp Biol; 2006 Dec; 209(Pt 24):4895-900. PubMed ID: 17142678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of gravity in human walking: pendular energy exchange, external work and optimal speed.
    Cavagna GA; Willems PA; Heglund NC
    J Physiol; 2000 Nov; 528(Pt 3):657-68. PubMed ID: 11060138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing center of mass vertical movement increases metabolic cost in walking.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2005 Dec; 99(6):2099-107. PubMed ID: 16051716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reduced gravity on the preferred walk-run transition speed.
    Kram R; Domingo A; Ferris DP
    J Exp Biol; 1997 Feb; 200(Pt 4):821-6. PubMed ID: 9076966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual limb work does not explain the greater metabolic cost of walking in elderly adults.
    Ortega JD; Farley CT
    J Appl Physiol (1985); 2007 Jun; 102(6):2266-73. PubMed ID: 17363623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents?
    Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A
    J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of reduced gravity on the kinematics of human walking: a test of the dynamic similarity hypothesis for locomotion.
    Donelan JM; Kram R
    J Exp Biol; 1997 Dec; 200(Pt 24):3193-201. PubMed ID: 9364025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of walking and running: insights from simulated reduced-gravity experiments.
    Farley CT; McMahon TA
    J Appl Physiol (1985); 1992 Dec; 73(6):2709-12. PubMed ID: 1490989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preferred walk to run transition speed in actual lunar gravity.
    De Witt JK; Edwards WB; Scott-Pandorf MM; Norcross JR; Gernhardt ML
    J Exp Biol; 2014 Sep; 217(Pt 18):3200-3. PubMed ID: 25232195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of gait kinematics in different simulators of reduced gravity.
    Sylos-Labini F; Ivanenko YP; Cappellini G; Portone A; MacLellan MJ; Lacquaniti F
    J Mot Behav; 2013; 45(6):495-505. PubMed ID: 24079466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inefficient use of inverted pendulum mechanism during quadrupedal walking in the Japanese macaque.
    Ogihara N; Makishima H; Hirasaki E; Nakatsukasa M
    Primates; 2012 Jan; 53(1):41-8. PubMed ID: 21874286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase shift between potential and kinetic energy in human walking.
    Cavagna GA; Legramandi MA
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 33037111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring dynamic similarity in human running using simulated reduced gravity.
    Donelan JM; Kram R
    J Exp Biol; 2000 Aug; 203(Pt 16):2405-15. PubMed ID: 10903155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical energy fluctuations during walking of healthy and ACL-reconstructed subjects.
    Winiarski S
    Acta Bioeng Biomech; 2008; 10(2):57-63. PubMed ID: 19031999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant.
    Neptune RR; Zajac FE; Kautz SA
    J Biomech; 2004 Jun; 37(6):817-25. PubMed ID: 15111069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.