BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9887265)

  • 1. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function.
    Bahar I; Erman B; Jernigan RL; Atilgan AR; Covell DG
    J Mol Biol; 1999 Jan; 285(3):1023-37. PubMed ID: 9887265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
    Braz VA; Holladay LA; Barkley MD
    Biochemistry; 2010 Jan; 49(3):601-10. PubMed ID: 20039714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of tRNA on the Maturation of HIV-1 Reverse Transcriptase.
    Ilina TV; Slack RL; Elder JH; Sarafianos SG; Parniak MA; Ishima R
    J Mol Biol; 2018 Jun; 430(13):1891-1900. PubMed ID: 29751015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative domain orientation of the L289K HIV-1 reverse transcriptase monomer.
    Xi Z; Ilina TV; Guerrero M; Fan L; Sluis-Cremer N; Wang YX; Ishima R
    Protein Sci; 2022 May; 31(5):e4307. PubMed ID: 35481647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism.
    Das K; Martinez SE; Bauman JD; Arnold E
    Nat Struct Mol Biol; 2012 Jan; 19(2):253-9. PubMed ID: 22266819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Conformational States of the Finger and Thumb Subdomains of HIV-1 Reverse Transcriptase Using Double Electron-Electron Resonance Electron Paramagnetic Resonance Spectroscopy.
    Schmidt T; Tian L; Clore GM
    Biochemistry; 2018 Feb; 57(5):489-493. PubMed ID: 29251492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Interaction between HIV-1 Protease and the Homodimeric p66/p66' Reverse Transcriptase Precursor by Double Electron-Electron Resonance EPR Spectroscopy.
    Schmidt T; Louis JM; Clore GM
    Chembiochem; 2020 Nov; 21(21):3051-3055. PubMed ID: 32558168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Structural Maturation Pathway of HIV-1 Reverse Transcriptase.
    Kirby TW; Gabel SA; DeRose EF; Perera L; Krahn JM; Pedersen LC; London RE
    Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical Characterization of p51 and p66 Monomers of HIV-1 Reverse Transcriptase with Their Inhibitors.
    Seetaha S; Kamonsutthipaijit N; Yagi-Utsumi M; Seako Y; Yamaguchi T; Hannongbua S; Kato K; Choowongkomon K
    Protein J; 2023 Dec; 42(6):741-752. PubMed ID: 37728788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556.
    Zheng X; Mueller GA; DeRose EF; London RE
    Nucleic Acids Res; 2012 Nov; 40(20):10543-53. PubMed ID: 22941642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-graining protein structures into their dynamic communities with DCI, a dynamic community identifier.
    Kumar A; Khade PM; Dorman KS; Jernigan RL
    Bioinformatics; 2022 May; 38(10):2727-2733. PubMed ID: 35561187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV.
    Mallakuntla MK; Togre NS; Santos DB; Tiwari S
    Pharmaceuticals (Basel); 2022 Nov; 15(11):. PubMed ID: 36422545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sampling of Protein Conformational Space Using Hybrid Simulations: A Critical Assessment of Recent Methods.
    Kaynak BT; Krieger JM; Dudas B; Dahmani ZL; Costa MGS; Balog E; Scott AL; Doruker P; Perahia D; Bahar I
    Front Mol Biosci; 2022; 9():832847. PubMed ID: 35187088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Bilocalization Effect and the Emergence of Molecular Functions in Proteins.
    Chalopin Y; Sparfel J
    Front Mol Biosci; 2021; 8():736376. PubMed ID: 35004841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Frequency Harmonic Perturbations Drive Protein Conformational Changes.
    Scaramozzino D; Piana G; Lacidogna G; Carpinteri A
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Ways to Enhance Protein Inhibitor Design.
    Jernigan RL; Sankar K; Jia K; Faraggi E; Kloczkowski A
    Front Mol Biosci; 2020; 7():607323. PubMed ID: 33614705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physical origin of rate promoting vibrations in enzymes revealed by structural rigidity.
    Chalopin Y
    Sci Rep; 2020 Oct; 10(1):17465. PubMed ID: 33060716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of Potential COVID-19 Drug Treatments through the Study of Existing Protein-Drug and Protein-Protein Structures: An Analysis of Kinetically Active Residues.
    Perišić O
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32967116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-(Arylamino)-6-(trifluoromethyl)nicotinic Acid Derivatives: New HIV-1 RT Dual Inhibitors Active on Viral Replication.
    Corona A; Onnis V; Del Vecchio C; Esposito F; Cheng YC; Tramontano E
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32183488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of Allostery: Contrasting the Induced Fit and Population Shift Scenarios.
    Ravasio R; Flatt SM; Yan L; Zamuner S; Brito C; Wyart M
    Biophys J; 2019 Nov; 117(10):1954-1962. PubMed ID: 31653447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.