BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 9887269)

  • 1. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied.
    Pohl E; Holmes RK; Hol WG
    J Mol Biol; 1999 Jan; 285(3):1145-56. PubMed ID: 9887269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain.
    Pohl E; Holmes RK; Hol WG
    J Mol Biol; 1999 Sep; 292(3):653-67. PubMed ID: 10497029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis.
    Wisedchaisri G; Chou CJ; Wu M; Roach C; Rice AE; Holmes RK; Beeson C; Hol WG
    Biochemistry; 2007 Jan; 46(2):436-47. PubMed ID: 17209554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-linked dimerization in the iron-dependent regulator from Mycobacterium tuberculosis.
    Semavina M; Beckett D; Logan TM
    Biochemistry; 2006 Oct; 45(41):12480-90. PubMed ID: 17029403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of an IdeR-DNA complex reveals a conformational change in activated IdeR for base-specific interactions.
    Wisedchaisri G; Holmes RK; Hol WG
    J Mol Biol; 2004 Sep; 342(4):1155-69. PubMed ID: 15351642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor.
    Qiu X; Pohl E; Holmes RK; Hol WG
    Biochemistry; 1996 Sep; 35(38):12292-302. PubMed ID: 8823163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of truncated variants of the iron dependent transcriptional regulators from Corynebacterium diphtheriae and Mycobacterium tuberculosis.
    Oram DM; Must LM; Spinler JK; Twiddy EM; Holmes RK
    FEMS Microbiol Lett; 2005 Feb; 243(1):1-8. PubMed ID: 15667993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the N-terminal helix in the metal ion-induced activation of the diphtheria toxin repressor DtxR.
    D'Aquino JA; Lattimer JR; Denninger A; D'Aquino KE; Ringe D
    Biochemistry; 2007 Oct; 46(42):11761-70. PubMed ID: 17902703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis.
    Stapleton B; Walker LR; Logan TM
    Biochemistry; 2013 Mar; 52(11):1927-38. PubMed ID: 23432191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.
    Rangachari V; Marin V; Bienkiewicz EA; Semavina M; Guerrero L; Love JF; Murphy JR; Logan TM
    Biochemistry; 2005 Apr; 44(15):5672-82. PubMed ID: 15823025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis and insight into metal-ion activation of the iron-dependent regulator from Thermoplasma acidophilum.
    Yeo HK; Park YW; Lee JY
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1281-8. PubMed ID: 24816097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional studies of the Mycobacterium tuberculosis iron-dependent regulator.
    Chou CJ; Wisedchaisri G; Monfeli RR; Oram DM; Holmes RK; Hol WG; Beeson C
    J Biol Chem; 2004 Dec; 279(51):53554-61. PubMed ID: 15456786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the intermediate complex of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator reveals detailed mechanism of arginine repression.
    Cherney LT; Cherney MM; Garen CR; James MN
    J Mol Biol; 2010 Jun; 399(2):240-54. PubMed ID: 20382162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex.
    White A; Ding X; vanderSpek JC; Murphy JR; Ringe D
    Nature; 1998 Jul; 394(6692):502-6. PubMed ID: 9697776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins.
    Cook WJ; Kar SR; Taylor KB; Hall LM
    J Mol Biol; 1998 Jan; 275(2):337-46. PubMed ID: 9466913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Both Corynebacterium diphtheriae DtxR(E175K) and Mycobacterium tuberculosis IdeR(D177K) are dominant positive repressors of IdeR-regulated genes in M. tuberculosis.
    Manabe YC; Hatem CL; Kesavan AK; Durack J; Murphy JR
    Infect Immun; 2005 Sep; 73(9):5988-94. PubMed ID: 16113319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of three diphtheria toxin repressor (DtxR) variants with decreased repressor activity.
    Pohl E; Goranson-Siekierke J; Choi MK; Roosild T; Holmes RK; Hol WG
    Acta Crystallogr D Biol Crystallogr; 2001 May; 57(Pt 5):619-27. PubMed ID: 11320302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor.
    Gonzalez de Peredo A; Saint-Pierre C; Latour JM; Michaud-Soret I; Forest E
    J Mol Biol; 2001 Jun; 310(1):83-91. PubMed ID: 11419938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis.
    Traoré DA; El Ghazouani A; Ilango S; Dupuy J; Jacquamet L; Ferrer JL; Caux-Thang C; Duarte V; Latour JM
    Mol Microbiol; 2006 Sep; 61(5):1211-9. PubMed ID: 16925555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.