BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 9887328)

  • 1. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease.
    Hackam AS; Singaraja R; Zhang T; Gan L; Hayden MR
    Hum Mol Genet; 1999 Jan; 8(1):25-33. PubMed ID: 9887328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease in cell culture and in transgenic mice expressing mutant huntingtin.
    Hackam AS; Hodgson JG; Singaraja R; Zhang T; Gan L; Gutekunst CA; Hersch SM; Hayden MR
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1047-55. PubMed ID: 10434304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cellular model that recapitulates major pathogenic steps of Huntington's disease.
    Lunkes A; Mandel JL
    Hum Mol Genet; 1998 Sep; 7(9):1355-61. PubMed ID: 9700187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture.
    Cooper JK; Schilling G; Peters MF; Herring WJ; Sharp AH; Kaminsky Z; Masone J; Khan FA; Delanoy M; Borchelt DR; Dawson VL; Dawson TM; Ross CA
    Hum Mol Genet; 1998 May; 7(5):783-90. PubMed ID: 9536081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions.
    Lunkes A; Lindenberg KS; Ben-Haïem L; Weber C; Devys D; Landwehrmeyer GB; Mandel JL; Trottier Y
    Mol Cell; 2002 Aug; 10(2):259-69. PubMed ID: 12191472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid aggregate formation of the huntingtin N-terminal fragment carrying an expanded polyglutamine tract.
    Hazeki N; Nakamura K; Goto J; Kanazawa I
    Biochem Biophys Res Commun; 1999 Mar; 256(2):361-6. PubMed ID: 10079189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins.
    Huang CC; Faber PW; Persichetti F; Mittal V; Vonsattel JP; MacDonald ME; Gusella JF
    Somat Cell Mol Genet; 1998 Jul; 24(4):217-33. PubMed ID: 10410676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Huntingtin contains a highly conserved nuclear export signal.
    Xia J; Lee DH; Taylor J; Vandelft M; Truant R
    Hum Mol Genet; 2003 Jun; 12(12):1393-403. PubMed ID: 12783847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyglutamine pathogenesis.
    Ross CA; Wood JD; Schilling G; Peters MF; Nucifora FC; Cooper JK; Sharp AH; Margolis RL; Borchelt DR
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1005-11. PubMed ID: 10434299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats.
    Li SH; Li XJ
    Hum Mol Genet; 1998 May; 7(5):777-82. PubMed ID: 9536080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Huntingtin fragments that aggregate go their separate ways.
    DiFiglia M
    Mol Cell; 2002 Aug; 10(2):224-5. PubMed ID: 12191468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease.
    Truant R; Atwal RS; Burtnik A
    Prog Neurobiol; 2007 Nov; 83(4):211-27. PubMed ID: 17240517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear targeting of mutant Huntingtin increases toxicity.
    Peters MF; Nucifora FC; Kushi J; Seaman HC; Cooper JK; Herring WJ; Dawson VL; Dawson TM; Ross CA
    Mol Cell Neurosci; 1999 Aug; 14(2):121-8. PubMed ID: 10479410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein aggregation in Huntington's disease.
    Hoffner G; Djian P
    Biochimie; 2002 Apr; 84(4):273-8. PubMed ID: 12106904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex interplay between the length and composition of the huntingtin-derived peptides modulates the intracellular behavior of the N-terminal fragments of mutant huntingtin.
    Milewski M; Gawliński P; Bąk D; Matysiak A; Bal J
    Eur J Cell Biol; 2015 May; 94(5):179-89. PubMed ID: 25773959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice.
    Schilling G; Savonenko AV; Klevytska A; Morton JL; Tucker SM; Poirier M; Gale A; Chan N; Gonzales V; Slunt HH; Coonfield ML; Jenkins NA; Copeland NG; Ross CA; Borchelt DR
    Hum Mol Genet; 2004 Aug; 13(15):1599-610. PubMed ID: 15190011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a recruitment and sequestration mechanism in Huntington's disease.
    Preisinger E; Jordan BM; Kazantsev A; Housman D
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1029-34. PubMed ID: 10434302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release.
    Jana NR; Zemskov EA; Wang Gh ; Nukina N
    Hum Mol Genet; 2001 May; 10(10):1049-59. PubMed ID: 11331615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are there multiple pathways in the pathogenesis of Huntington's disease?
    Aronin N; Kim M; Laforet G; DiFiglia M
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):995-1003. PubMed ID: 10434298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus.
    Gafni J; Hermel E; Young JE; Wellington CL; Hayden MR; Ellerby LM
    J Biol Chem; 2004 May; 279(19):20211-20. PubMed ID: 14981075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.