BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 9887446)

  • 1. Comparison of the effects of serotonin in the hippocampus and the entorhinal cortex.
    Schmitz D; Gloveli T; Empson RM; Heinemann U
    Mol Neurobiol; 1998; 17(1-3):59-72. PubMed ID: 9887446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism.
    Schmitz D; Gloveli T; Empson RM; Draguhn A; Heinemann U
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):119-29. PubMed ID: 9490827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonin reduces synaptic excitation of principal cells in the superficial layers of rat hippocampal-entorhinal cortex combined slices.
    Schmitz D; Empson RM; Gloveli T; Heinemann U
    Neurosci Lett; 1995 Apr; 190(1):37-40. PubMed ID: 7624050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin.
    Schmitz D; Gloveli T; Empson RM; Heinemann U
    Br J Pharmacol; 1999 Sep; 128(1):248-54. PubMed ID: 10498859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin reduces polysynaptic inhibition via 5-HT1A receptors in the superficial entorhinal cortex.
    Schmitz D; Gloveli T; Empson RM; Heinemann U
    J Neurophysiol; 1998 Sep; 80(3):1116-21. PubMed ID: 9744926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of serotonin on synaptic and intrinsic properties of rat subicular neurons in vitro.
    Behr J; Empson RM; Schmitz D; Gloveli T; Heinemann U
    Brain Res; 1997 Oct; 773(1-2):217-22. PubMed ID: 9409725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serotonin inhibits neuronal excitability by activating two-pore domain k+ channels in the entorhinal cortex.
    Deng PY; Poudel SK; Rojanathammanee L; Porter JE; Lei S
    Mol Pharmacol; 2007 Jul; 72(1):208-18. PubMed ID: 17452494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of entorhinal cortex projection cells to the hippocampal formation.
    Heinemann U; Schmitz D; Eder C; Gloveli T
    Ann N Y Acad Sci; 2000 Jun; 911():112-26. PubMed ID: 10911870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The perforant path projection from the medial entorhinal cortex layer III to the subiculum in the rat combined hippocampal-entorhinal cortex slice.
    Behr J; Gloveli T; Heinemann U
    Eur J Neurosci; 1998 Mar; 10(3):1011-8. PubMed ID: 9753168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of losigamone on synaptic potentials and spike frequency habituation in rat entorhinal cortex and hippocampal CA1 neurones.
    Schmitz D; Gloveli T; Heinemann U
    Neurosci Lett; 1995 Nov; 200(2):141-3. PubMed ID: 8614564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and post-synaptic functions of kainate receptors at glutamate and GABA synapses in the rat entorhinal cortex.
    Chamberlain SE; Jane DE; Jones RS
    Hippocampus; 2012 Mar; 22(3):555-76. PubMed ID: 21365713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinergic modulation of synaptic transmission and plasticity in entorhinal cortex and hippocampus of the rat.
    Yun SH; Cheong MY; Mook-Jung I; Huh K; Lee C; Jung MW
    Neuroscience; 2000; 97(4):671-6. PubMed ID: 10842011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.
    Scharfman HE; Goodman JH; Du F; Schwarcz R
    J Neurophysiol; 1998 Dec; 80(6):3031-46. PubMed ID: 9862904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous estimation of global background synaptic inhibition and excitation from membrane potential fluctuations in layer III neurons of the rat entorhinal cortex in vitro.
    Greenhill SD; Jones RS
    Neuroscience; 2007 Jul; 147(4):884-92. PubMed ID: 17600630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats.
    Xiao Z; Deng PY; Yang C; Lei S
    J Neurophysiol; 2009 Aug; 102(2):659-69. PubMed ID: 19494196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat.
    Gloveli T; Schmitz D; Empson RM; Dugladze T; Heinemann U
    Neuroscience; 1997 Apr; 77(3):629-48. PubMed ID: 9070741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in the nicotinic excitation of principal neurons within the developing hippocampal formation.
    Chung BYT; Bailey CDC
    Dev Neurobiol; 2019 Feb; 79(2):110-130. PubMed ID: 30354016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum.
    Sparks DW; Chapman CA
    Neuroscience; 2014 Oct; 278():81-92. PubMed ID: 25130557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A post-synaptic depressant modulatory action of 5-hydroxytryptamine on excitatory amino acid responses in rat entorhinal cortex in vitro.
    Sizer AR; Kilpatrick GJ; Roberts MH
    Neuropharmacology; 1992 Jun; 31(6):531-9. PubMed ID: 1407393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels.
    Deng PY; Lei S
    Mol Cell Neurosci; 2008 Oct; 39(2):273-84. PubMed ID: 18687403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.