These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 988784)

  • 1. Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilization.
    Kuykendall LD; Elkan GH
    Appl Environ Microbiol; 1976 Oct; 32(4):511-9. PubMed ID: 988784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Symbiotic Performance of Bradyrhizobium japonicum USDA 110 and Its Derivative I-110 and Discovery of a New Mannitol-Utilizing, Nitrogen-Fixing USDA 110 Derivative.
    Mathis JN; Israel DW; Barbour WM; Jarvis BD; Elkan GH
    Appl Environ Microbiol; 1986 Jul; 52(1):75-80. PubMed ID: 16347117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of colony morphology, salt tolerance, and effectiveness in Rhizobium japonicum.
    Upchurch RG; Elkan GH
    Can J Microbiol; 1977 Sep; 23(9):1118-22. PubMed ID: 561643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency.
    Mulongoy K; Elkan GH
    J Bacteriol; 1977 Jul; 131(1):179-87. PubMed ID: 559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen fixing activity in Rhizobium japonicum separated from plant cell cultures.
    Werner D; Wilcockson J; Kalkowski B
    Z Naturforsch C Biosci; 1975; 30(5):687-8. PubMed ID: 130001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoglucose isomerase mutant of Rhizobium meliloti.
    Arias A; Cerveńansky C; Gardiol A; Martínez-Drets G
    J Bacteriol; 1979 Jan; 137(1):409-14. PubMed ID: 762017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some features of mannitol metabolism in Rhizobium japonicum.
    Kuykendall LD; Elkan GH
    J Gen Microbiol; 1977 Jan; 98(1):291-5. PubMed ID: 833572
    [No Abstract]   [Full Text] [Related]  

  • 8. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils.
    Rennie RJ
    Can J Microbiol; 1981 Jan; 27(1):8-14. PubMed ID: 7214234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ineffective and non-nodulating mutant strains of Rhizobium japonicum.
    Maier RJ; Brill WJ
    J Bacteriol; 1976 Aug; 127(2):763-9. PubMed ID: 986388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of Rhizobium japonicum strain derivatives by antibiotic sensitivity patterns, lectin binding, and utilization of biochemicals.
    Meyer MC; Pueppke SG
    Can J Microbiol; 1980 May; 26(5):606-12. PubMed ID: 7190460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum.
    Hara S; Hashidoko Y; Desyatkin RV; Hatano R; Tahara S
    Appl Environ Microbiol; 2009 May; 75(9):2811-9. PubMed ID: 19286791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate reductase activities of rhizobia and the correlation between nitrate reduction and nitrogen fixation.
    Manhart JR; Wong PP
    Can J Microbiol; 1979 Oct; 25(10):1169-74. PubMed ID: 119573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pleomorphism and acetylene-reducing activity of free-living rhizobia.
    Kaneshiro T; Baker FL; Johnson DE
    J Bacteriol; 1983 Feb; 153(2):1045-50. PubMed ID: 6822472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative response of Pisum sativum nodulated with indigenous soil Rhizobium populations and/or co-inoculated with a Rhizobium leguminosarum strain. I. Acetylene-reducing, dihydrogen- and carbon dioxide-evolving activities.
    Skrdleta V; Nĕmcová M; Lisá L; Novák K; Kovárová D
    Folia Microbiol (Praha); 1991; 36(3):271-6. PubMed ID: 1841862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylene reduction by transfilter suspension cultures of Rhizobium japonicum.
    Reporter M; Hermina N
    Biochem Biophys Res Commun; 1975 Jun; 64(4):1126-33. PubMed ID: 1169944
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of pesticide seed treatments on Rhizobium japonicum and its symbiotic relationship with soybean.
    Tu CM
    Bull Environ Contam Toxicol; 1977 Aug; 18(2):190-9. PubMed ID: 70252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Mannitol-Utilizing, Nitrogen-Fixing Bradyrhizobium japonicum USDA 110 Derivative.
    Mathis JN; Barbour WM; Miller TB; Israel DW; Elkan GH
    Appl Environ Microbiol; 1986 Jul; 52(1):81-5. PubMed ID: 16347118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen evolution and uptake by nodules of soybeans inoculated with different strains of Rhizobium japonicum.
    Carter KR; Jennings NT; Hanus J; Evans HJ
    Can J Microbiol; 1978 Mar; 24(3):307-11. PubMed ID: 565672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between inoculum strains of Rhizobium japonicum in the process of soybean nodulation during three planting periods.
    Skrdleta V
    Folia Microbiol (Praha); 1973; 18(4):341-7. PubMed ID: 4201820
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxygen requirement for acetylene reduction by pure cultures of rhizobia.
    Keister DL; Evans WR
    J Bacteriol; 1976 Jul; 127(1):149-53. PubMed ID: 931945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.