These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9888237)

  • 41. Theoretical analysis of the experimental artifact in trabecular bone compressive modulus.
    Keaveny TM; Borchers RE; Gibson LJ; Hayes WC
    J Biomech; 1993; 26(4-5):599-607. PubMed ID: 8478361
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip.
    Fazzalari NL; Parkinson IH
    J Bone Miner Res; 1997 Apr; 12(4):632-40. PubMed ID: 9101375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of the biomechanical properties of cancellous bone using ultrasound velocity and bone mineral density--an in vitro study.
    Drozdzowska B; Pluskiewicz W; Przedlacki J
    Med Sci Monit; 2002 Jan; 8(1):MT15-20. PubMed ID: 11782683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Minimum solid area models applied to the prediction of Young's modulus for cancellous bone.
    O'Kelly KU; Carr AJ; McCormack BA
    J Mater Sci Mater Med; 2003 Apr; 14(4):379-84. PubMed ID: 15348463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An investigation into the feasibility of implementing fractal paradigms to simulate cancellous bone structure.
    Haire TJ; Ganney PS; Langton CM
    Comput Methods Biomech Biomed Engin; 2001; 4(4):341-54. PubMed ID: 11328644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the fractal nature of trabecular structure.
    Chung HW; Chu CC; Underweiser M; Wehrli FW
    Med Phys; 1994 Oct; 21(10):1535-40. PubMed ID: 7869984
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hardness, an indicator of the mechanical competence of cancellous bone.
    Hodgskinson R; Currey JD; Evans GP
    J Orthop Res; 1989; 7(5):754-8. PubMed ID: 2760749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties.
    Uchiyama T; Tanizawa T; Muramatsu H; Endo N; Takahashi HE; Hara T
    Bone; 1999 Oct; 25(4):487-91. PubMed ID: 10511117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.
    Cendre E; Mitton D; Roux JP; Arlot ME; Duboeuf F; Burt-Pichat B; Rumelhart C; Peix G; Meunier PJ
    Osteoporos Int; 1999; 10(5):353-60. PubMed ID: 10591832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone.
    Kadir MR; Syahrom A; Ochsner A
    Med Biol Eng Comput; 2010 May; 48(5):497-505. PubMed ID: 20224954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct measurement of trabecular bone anisotropy using directional fractal dimension and principal axes of inertia.
    Yi WJ; Heo MS; Lee SS; Choi SC; Huh KH; Lee SP
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2007 Jul; 104(1):110-6. PubMed ID: 17368056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone.
    Hodgskinson R; Currey JD
    Clin Biomech (Bristol, Avon); 1993 Sep; 8(5):262-8. PubMed ID: 23915987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anisotropy of Young's modulus of bone.
    Katz JL
    Nature; 1980 Jan; 283(5742):106-7. PubMed ID: 7350519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Power-law hereditariness of hierarchical fractal bones.
    Deseri L; Di Paola M; Zingales M; Pollaci P
    Int J Numer Method Biomed Eng; 2013 Dec; 29(12):1338-60. PubMed ID: 23836622
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of bone demineralization due to the use of exoprosthesis by comparing Young's modulus of the femur in unilateral transfemoral amputees.
    Ramírez JF; Isaza JA; Mariaka I; Vélez JA
    Prosthet Orthot Int; 2011 Dec; 35(4):459-66. PubMed ID: 22005351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Is quantitative ultrasound dependent on bone structure? A reflection.
    Njeh CF; Fuerst T; Diessel E; Genant HK
    Osteoporos Int; 2001; 12(1):1-15. PubMed ID: 11305077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.