BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9888807)

  • 41. On-column purification and refolding of recombinant bovine prion protein: using its octarepeat sequences as a natural affinity tag.
    Yin SM; Zheng Y; Tien P
    Protein Expr Purif; 2003 Nov; 32(1):104-9. PubMed ID: 14680946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Is the prion domain of soluble Ure2p unstructured?
    Pierce MM; Baxa U; Steven AC; Bax A; Wickner RB
    Biochemistry; 2005 Jan; 44(1):321-8. PubMed ID: 15628874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo design of a copper(II)-binding helix-turn-helix chimera: the prion octarepeat motif in a new context.
    Shields SB; Franklin SJ
    Biochemistry; 2004 Dec; 43(51):16086-91. PubMed ID: 15610003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Raman optical activity and circular dichroism reveal dramatic differences in the influence of divalent copper and manganese ions on prion protein folding.
    Zhu F; Davies P; Thompsett AR; Kelly SM; Tranter GE; Hecht L; Isaacs NW; Brown DR; Barron LD
    Biochemistry; 2008 Feb; 47(8):2510-7. PubMed ID: 18205409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and testing of peptides for anti-prion activity.
    Sellarajah S; Boussard C; Lekishvili T; Brown DR; Gilbert IH
    Eur J Med Chem; 2008 Nov; 43(11):2418-27. PubMed ID: 18355947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry.
    Whittal RM; Ball HL; Cohen FE; Burlingame AL; Prusiner SB; Baldwin MA
    Protein Sci; 2000 Feb; 9(2):332-43. PubMed ID: 10716185
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural analysis of chicken factor B-like protease and comparison with mammalian complement proteins factor B and C2.
    Kjalke M; Welinder KG; Koch C
    J Immunol; 1993 Oct; 151(8):4147-52. PubMed ID: 8409391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prion proteins leading to neurodegeneration.
    La Mendola D; Pietropaolo A; Pappalardo G; Zannoni C; Rizzarelli E
    Curr Alzheimer Res; 2008 Dec; 5(6):579-90. PubMed ID: 19075585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disparate evolution of prion protein domains and the distinct origin of Doppel- and prion-related loci revealed by fish-to-mammal comparisons.
    Rivera-Milla E; Oidtmann B; Panagiotidis CH; Baier M; Sklaviadis T; Hoffmann R; Zhou Y; Solis GP; Stuermer CA; Málaga-Trillo E
    FASEB J; 2006 Feb; 20(2):317-9. PubMed ID: 16352647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Copper binding in the prion protein.
    Millhauser GL
    Acc Chem Res; 2004 Feb; 37(2):79-85. PubMed ID: 14967054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Consequences of manganese replacement of copper for prion protein function and proteinase resistance.
    Brown DR; Hafiz F; Glasssmith LL; Wong BS; Jones IM; Clive C; Haswell SJ
    EMBO J; 2000 Mar; 19(6):1180-6. PubMed ID: 10716918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The cellular prion protein binds copper in vivo.
    Brown DR; Qin K; Herms JW; Madlung A; Manson J; Strome R; Fraser PE; Kruck T; von Bohlen A; Schulz-Schaeffer W; Giese A; Westaway D; Kretzschmar H
    Nature; 1997 Dec 18-25; 390(6661):684-7. PubMed ID: 9414160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recombinant expression of soluble murine prion protein for C-terminal modification.
    Chu NK; Becker CF
    FEBS Lett; 2013 Mar; 587(5):430-5. PubMed ID: 23337878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative analysis of the human and chicken prion protein copper binding regions at pH 6.5.
    Redecke L; Meyer-Klaucke W; Koker M; Clos J; Georgieva D; Genov N; Echner H; Kalbacher H; Perbandt M; Bredehorst R; Voelter W; Betzel C
    J Biol Chem; 2005 Apr; 280(14):13987-92. PubMed ID: 15684434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.
    Leliveld SR; Dame RT; Wuite GJ; Stitz L; Korth C
    J Biol Chem; 2006 Feb; 281(6):3268-75. PubMed ID: 16352600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain?
    Hecel A; Valensin D; Kozłowski H
    J Inorg Biochem; 2019 Feb; 191():143-153. PubMed ID: 30529722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fragmentation and dimerization of copper-loaded prion protein by copper-catalysed oxidation.
    Shiraishi N; Inai Y; Bi W; Nishikimi M
    Biochem J; 2005 Apr; 387(Pt 1):247-55. PubMed ID: 15554874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies on the structural stability of rabbit prion probed by molecular dynamics simulations of its wild-type and mutants.
    Zhang J
    J Theor Biol; 2010 May; 264(1):119-22. PubMed ID: 20109469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins.
    Zhang J
    J Theor Biol; 2011 Jan; 269(1):88-95. PubMed ID: 20970434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity.
    Walter ED; Chattopadhyay M; Millhauser GL
    Biochemistry; 2006 Oct; 45(43):13083-92. PubMed ID: 17059225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.