These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 9889189)

  • 21. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
    Moffat J; Andrews B
    Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1.
    Rubin-Bejerano I; Mandel S; Robzyk K; Kassir Y
    Mol Cell Biol; 1996 May; 16(5):2518-26. PubMed ID: 8628320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle.
    Haase SB; Reed SI
    Nature; 1999 Sep; 401(6751):394-7. PubMed ID: 10517640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae.
    Mizuno T; Nakazawa N; Remgsamrarn P; Kunoh T; Oshima Y; Harashima S
    Curr Genet; 1998 Apr; 33(4):239-47. PubMed ID: 9560430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic footprinting of the yeast zinc finger protein Rme1p and its roles in repression of the meiotic activator IME1.
    Shimizu M; Li W; Covitz PA; Hara M; Shindo H; Mitchell AP
    Nucleic Acids Res; 1998 May; 26(10):2329-36. PubMed ID: 9580682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae.
    Sherman A; Shefer M; Sagee S; Kassir Y
    Mol Gen Genet; 1993 Mar; 237(3):375-84. PubMed ID: 8483452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast.
    Baroni MD; Monti P; Alberghina L
    Nature; 1994 Sep; 371(6495):339-42. PubMed ID: 8090203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae.
    Sagee S; Sherman A; Shenhar G; Robzyk K; Ben-Doy N; Simchen G; Kassir Y
    Mol Cell Biol; 1998 Apr; 18(4):1985-95. PubMed ID: 9528770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching on S phase.
    Tromans A
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):873. PubMed ID: 11733763
    [No Abstract]   [Full Text] [Related]  

  • 30. [Cell cycle switch from mitotic to meiotic in fission yeast: critical role for an RNA-binding protein].
    Watanabe Y; Yamamoto M
    Tanpakushitsu Kakusan Koso; 1997 Dec; 42(16):2581-9. PubMed ID: 9404154
    [No Abstract]   [Full Text] [Related]  

  • 31. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast.
    Honigberg SM; Purnapatre K
    J Cell Sci; 2003 Jun; 116(Pt 11):2137-47. PubMed ID: 12730290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How do cells control the timing of DNA replication and mitosis?
    Nasmyth K
    Harvey Lect; 1992-1993; 88():141-71. PubMed ID: 1365873
    [No Abstract]   [Full Text] [Related]  

  • 33. Stimulation of later functions of the yeast meiotic protein kinase Ime2p by the IDS2 gene product.
    Sia RA; Mitchell AP
    Mol Cell Biol; 1995 Oct; 15(10):5279-87. PubMed ID: 7565676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of meiotic entry by dual inhibition of a key mitotic transcription factor.
    Su AJ; Yendluri SC; Ünal E
    Elife; 2024 Feb; 12():. PubMed ID: 38411169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast.
    Mizunuma M; Hirata D; Miyahara K; Tsuchiya E; Miyakawa T
    Nature; 1998 Mar; 392(6673):303-6. PubMed ID: 9521328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast.
    Barral Y; Jentsch S; Mann C
    Genes Dev; 1995 Feb; 9(4):399-409. PubMed ID: 7883165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1.
    Guttmann-Raviv N; Martin S; Kassir Y
    Mol Cell Biol; 2002 Apr; 22(7):2047-56. PubMed ID: 11884593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meiotic inheritance of functional Gal80S gene product in Saccharomyces cerevisiae.
    Keller AD; Young ET
    Yeast; 1997 Apr; 13(5):441-7. PubMed ID: 9153754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae.
    Smith HE; Mitchell AP
    Mol Cell Biol; 1989 May; 9(5):2142-52. PubMed ID: 2664470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nutrient dependant switch explains mutually exclusive existence of meiosis and mitosis initiation in budding yeast.
    Wannige CT; Kulasiri D; Samarasinghe S
    J Theor Biol; 2014 Jan; 341():88-101. PubMed ID: 24099720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.