BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9889277)

  • 1. Triple helix formation: binding avidity of acridine-conjugated AG motif third strands containing natural, modified and surrogate bases opposed to pyrimidine interruptions in a polypurine target.
    Orson FM; Klysik J; Bergstrom DE; Ward B; Glass GA; Hua P; Kinsey BM
    Nucleic Acids Res; 1999 Feb; 27(3):810-6. PubMed ID: 9889277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide.
    Shahid KA; Majumdar A; Alam R; Liu ST; Kuan JY; Sui X; Cuenoud B; Glazer PM; Miller PS; Seidman MM
    Biochemistry; 2006 Feb; 45(6):1970-8. PubMed ID: 16460044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities.
    Brunet E; Corgnali M; Perrouault L; Roig V; Asseline U; Sørensen MD; Babu BR; Wengel J; Giovannangeli C
    Nucleic Acids Res; 2005; 33(13):4223-34. PubMed ID: 16049028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of triple helix formation by polypurine versus polypyrimidine oligodeoxynucleotides when conjugated to a DNA intercalator.
    Orson FM; Klysik J; Glass GA; Kinsey BM
    J Exp Ther Oncol; 1996 May; 1(3):177-85. PubMed ID: 9414402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue.
    Semenyuk A; Darian E; Liu J; Majumdar A; Cuenoud B; Miller PS; Mackerell AD; Seidman MM
    Biochemistry; 2010 Sep; 49(36):7867-78. PubMed ID: 20701359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting neighbouring poly(purine.pyrimidine) sequences located in the human bcr promoter by triplex-forming oligonucleotides.
    Xodo LE; Rathinavelan T; Quadrifoglio F; Manzini G; Yathindra N
    Eur J Biochem; 2001 Feb; 268(3):656-64. PubMed ID: 11168404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance and affinity dependence of triplex-induced recombination.
    Knauert MP; Lloyd JA; Rogers FA; Datta HJ; Bennett ML; Weeks DL; Glazer PM
    Biochemistry; 2005 Mar; 44(10):3856-64. PubMed ID: 15751961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplex formation by morpholino oligodeoxyribonucleotides in the HER-2/neu promoter requires the pyrimidine motif.
    Basye J; Trent JO; Gao D; Ebbinghaus SW
    Nucleic Acids Res; 2001 Dec; 29(23):4873-80. PubMed ID: 11726697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of novel TFOs bearing an abasic portion and their triplex forming ability with a DNA duplex containing a pyrimidine-gapped polypurine strand.
    Sato M; Moriguchi T; Shinozuka K
    Nucleic Acids Res Suppl; 2003; (3):141-2. PubMed ID: 14510420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved synthesis of daunomycin conjugates with triplex-forming oligonucleotides. The polypurine tract of HIV-1 as a target.
    Capobianco ML; De Champdoré M; Arcamone F; Garbesi A; Guianvarc'h D; B Arimondo P
    Bioorg Med Chem; 2005 May; 13(9):3209-18. PubMed ID: 15809156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides.
    Kukreti S; Sun JS; Garestier T; Hélène C
    Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases.
    Rogers FA; Lloyd JA; Tiwari MK
    Artif DNA PNA XNA; 2014; 5(1):e27792. PubMed ID: 25483840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and monitored selection of nucleotide surrogates for binding T:A base pairs in homopurine-homopyrimidine DNA triple helices.
    Mokhir AA; Connors WH; Richert C
    Nucleic Acids Res; 2001 Sep; 29(17):3674-84. PubMed ID: 11522839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of stable DNA triple helices within the human bcr promoter at a critical oligopurine target interrupted in the middle by two adjacent pyrimidines.
    Xodo LE; Manzini G; Quadrifoglio F
    Antisense Nucleic Acid Drug Dev; 1998 Dec; 8(6):477-88. PubMed ID: 9918112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective binding of pyrido[2,3-d]pyrimidine 2'-deoxyribonucleoside to AT base pairs in antiparallel triple helices.
    Durland RH; Rao TS; Jayaraman K; Revankar GR
    Bioconjug Chem; 1995; 6(3):278-82. PubMed ID: 7632799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNase I footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: stringency, structural changes and interaction with minor groove binding ligands.
    Stonehouse TJ; Fox KR
    Biochim Biophys Acta; 1994 Aug; 1218(3):322-30. PubMed ID: 8049258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linkers designed to intercalate the double helix greatly facilitate DNA alkylation by triplex-forming oligonucleotides carrying a cyclopropapyrroloindole reactive moiety.
    Dempcy RO; Kutyavin IV; Mills AG; Lukhtanov EA; Meyer RB
    Nucleic Acids Res; 1999 Jul; 27(14):2931-7. PubMed ID: 10390536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl.
    Gamper HB; Kutyavin IV; Rhinehart RL; Lokhov SG; Reed MW; Meyer RB
    Biochemistry; 1997 Dec; 36(48):14816-26. PubMed ID: 9398203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.