These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9889299)

  • 1. The (gt)n(ga)m containing intron 2 of HLA-DRB alleles binds a zinc-dependent protein and forms non B-DNA structures.
    Mäueler W; Bassili G; Arnold R; Renkawitz R; Epplen JT
    Gene; 1999 Jan; 226(1):9-23. PubMed ID: 9889299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complex composed of at least two HeLa nuclear proteins protects preferentially one DNA strand of the simple (gt)n(ga)m containing region of intron 2 in HLA-DRB genes.
    Mäueler W; Frank G; Muller M; Epplen JT
    J Cell Biochem; 1994 Sep; 56(1):74-85. PubMed ID: 7806593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein binding to simple repetitive sequences depends on DNA secondary structure(s).
    Mäueler W; Bassili G; Epplen C; Keyl HG; Epplen JT
    Chromosome Res; 1999; 7(3):163-6. PubMed ID: 10421375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complex containing at least one zinc dependent HeLa nuclear protein binds to the intronic (gaa)(n) block of the frataxin gene.
    Mäueler W; Bassili G; Hardt C; Keyl HG; Epplen JT
    Gene; 2001 May; 270(1-2):131-43. PubMed ID: 11404010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypervariability of intronic simple (gt)n(ga)m repeats in HLA-DRB genes.
    Riess O; Kammerbauer C; Roewer L; Steimle V; Andreas A; Albert E; Nagai T; Epplen JT
    Immunogenetics; 1990; 32(2):110-6. PubMed ID: 2397932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The insulator protein CTCF represses transcription on binding to the (gt)(22)(ga)(15) microsatellite in intron 2 of the HLA-DRB1(*)0401 gene.
    Arnold R; Mäueler W; Bassili G; Lutz M; Burke L; Epplen TJ; Renkawitz R
    Gene; 2000 Aug; 253(2):209-14. PubMed ID: 10940558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coding versus intron variability: extremely polymorphic HLA-DRB1 exons are flanked by specific composite microsatellites, even in distant populations.
    Epplen C; Santos EJ; Guerreiro JF; van Helden P; Epplen JT
    Hum Genet; 1997 Mar; 99(3):399-406. PubMed ID: 9050930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing the origin of HLA-DRB1 alleles by microsatellite polymorphism.
    Bergström TF; Engkvist H; Erlandsson R; Josefsson A; Mack SJ; Erlich HA; Gyllensten U
    Am J Hum Genet; 1999 Jun; 64(6):1709-18. PubMed ID: 10330359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2003 Mar; 22(3):141-69. PubMed ID: 12804114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The paradox of MHC-DRB exon/intron evolution: alpha-helix and beta-sheet encoding regions diverge while hypervariable intronic simple repeats coevolve with beta-sheet codons.
    Schwaiger FW; Weyers E; Epplen C; Brün J; Ruff G; Crawford A; Epplen JT
    J Mol Evol; 1993 Sep; 37(3):260-72. PubMed ID: 8230250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of antiparallel DNA triple helix formation.
    Chandler SP; Fox KR
    Biochemistry; 1996 Nov; 35(47):15038-48. PubMed ID: 8942670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic simple repetitive DNAs are targets for differential binding of nuclear proteins.
    Epplen JT; Kyas A; Mäueler W
    FEBS Lett; 1996 Jun; 389(1):92-5. PubMed ID: 8682214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A binding protein to the DNase I hypersensitive site II in HLA-DR alpha gene was identified as NF90.
    Sakamoto S; Morisawa K; Ota K; Nie J; Taniguchi T
    Biochemistry; 1999 Mar; 38(11):3355-61. PubMed ID: 10079079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome-derived (gaa.ttc)24 trinucleotide block binds nuclear protein(s) specifically and forms triple helices.
    Mäueler W; Kyas A; Keyl HG; Epplen JT
    Gene; 1998 Jul; 215(2):389-403. PubMed ID: 9714838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments.
    Tolstonog GV; Wang X; Shoeman R; Traub P
    DNA Cell Biol; 2000 Nov; 19(11):647-77. PubMed ID: 11098216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction in vitro of type III intermediate filament proteins with triplex DNA.
    Li G; Tolstonog GV; Traub P
    DNA Cell Biol; 2002 Mar; 21(3):163-88. PubMed ID: 12015895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a multisubunit human protein which selectively binds single stranded d(GA)n and d(GT)n sequence repeats in DNA.
    Aharoni A; Baran N; Manor H
    Nucleic Acids Res; 1993 Nov; 21(22):5221-8. PubMed ID: 8255779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human protein translin specifically binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n: a study of the binding parameters.
    Jacob E; Pucshansky L; Zeruya E; Baran N; Manor H
    J Mol Biol; 2004 Dec; 344(4):939-50. PubMed ID: 15544804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On simple repetitive DNA sequences and complex diseases.
    Epplen C; Santos EJ; Mäueler W; van Helden P; Epplen JT
    Electrophoresis; 1997 Aug; 18(9):1577-85. PubMed ID: 9378125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligonucleotide fingerprinting using simple repeat motifs: a convenient, ubiquitously applicable method to detect hypervariability for multiple purposes.
    Epplen JT; Ammer H; Epplen C; Kammerbauer C; Mitreiter R; Roewer L; Schwaiger W; Steimle V; Zischler H; Albert E
    EXS; 1991; 58():50-69. PubMed ID: 1831166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.