BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9889394)

  • 21. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma membrane phospholipid organization in human erythrocytes.
    Schwartz RS; Chiu DT; Lubin B
    Curr Top Hematol; 1985; 5():63-112. PubMed ID: 3882343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of red blood cell membrane phospholipids and modulation of cell-macrophage interactions using cyclodextrins.
    Vahedi A; Bigdelou P; Farnoud AM
    Sci Rep; 2020 Sep; 10(1):15111. PubMed ID: 32934292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models.
    Zambrano P; Suwalsky M; Villena F; Jemiola-Rzeminska M; Strzalka K
    Biochem Biophys Res Commun; 2017 Jan; 483(1):528-533. PubMed ID: 27998775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipid symmetrization?
    Schwarz S; Haest CW; Deuticke B
    Biochim Biophys Acta; 1999 Oct; 1421(2):361-79. PubMed ID: 10518706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ assessment of erythrocyte membrane properties during cold storage.
    Wolkers WF; Crowe LM; Tsvetkova NM; Tablin F; Crowe JH
    Mol Membr Biol; 2002; 19(1):59-65. PubMed ID: 11989823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B(1-25) II. Peptide conformation by infrared spectroscopy.
    Shanmukh S; Biswas N; Waring AJ; Walther FJ; Wang Z; Chang Y; Notter RH; Dluhy RA
    Biophys Chem; 2005 Mar; 113(3):233-44. PubMed ID: 15620508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycosphingolipid acyl chain orientational order in unsaturated phosphatidylcholine bilayers.
    Morrow MR; Singh D; Lu D; Grant CW
    Biophys J; 1993 Mar; 64(3):654-64. PubMed ID: 8471718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane skeleton and red blood cell vesiculation at low pH.
    Bobrowska-Hägerstrand M; Hägerstrand H; Iglic A
    Biochim Biophys Acta; 1998 Apr; 1371(1):123-8. PubMed ID: 9565664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes.
    Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y
    J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier transform infrared spectroscopic identification of gel phase domains in reconstituted phospholipid vesicles containing Ca2+-ATPase.
    Jaworsky M; Mendelsohn R
    Biochim Biophys Acta; 1986 Sep; 860(3):491-502. PubMed ID: 2943318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abnormalities in membrane phospholipid organization in sickled erythrocytes.
    Lubin B; Chiu D; Bastacky J; Roelofsen B; Van Deenen LL
    J Clin Invest; 1981 Jun; 67(6):1643-9. PubMed ID: 7240412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brij detergents reveal new aspects of membrane microdomain in erythrocytes.
    Casadei BR; De Oliveira Carvalho P; Riske KA; Barbosa Rde M; De Paula E; Domingues CC
    Mol Membr Biol; 2014 Sep; 31(6):195-205. PubMed ID: 25222860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring dynamic spiculation in red blood cells with scanning ion conductance microscopy.
    Zhu C; Shi W; Daleke DL; Baker LA
    Analyst; 2018 Feb; 143(5):1087-1093. PubMed ID: 29384152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liposomes composed of unsaturated lipids for membrane modification of human erythrocytes.
    Stoll C; Holovati JL; Acker JP; Wolkers WF
    Mol Membr Biol; 2011; 28(7-8):454-61. PubMed ID: 21954868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmembrane distribution of sterol in the human erythrocyte.
    Schroeder F; Nemecz G; Wood WG; Joiner C; Morrot G; Ayraut-Jarrier M; Devaux PF
    Biochim Biophys Acta; 1991 Jul; 1066(2):183-92. PubMed ID: 1854783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of cell shape, membrane deformability and phospholipid organization on phosphate-calcium-induced fusion of erythrocytes.
    Farooqui SM; Wali RK; Baker RF; Kalra VK
    Biochim Biophys Acta; 1987 Nov; 904(2):239-50. PubMed ID: 3663671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.