These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9889821)

  • 1. Cross-bridge dynamics in the contracting heart.
    Peterson JN; Alpert NR
    Adv Exp Med Biol; 1998; 453():117-23; discussion 123-4. PubMed ID: 9889821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A myothermal analysis of the myosin crossbridge cycling rate during isometric tetanus in normal and hypothyroid rat hearts.
    Alpert NR; Mulieri LA; Litten RZ; Holubarsch C
    Eur Heart J; 1984 Dec; 5 Suppl F():3-11. PubMed ID: 6241898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered cross-bridge characteristics following haemodynamic overload in rabbit hearts expressing V3 myosin.
    Peterson JN; Nassar R; Anderson PA; Alpert NR
    J Physiol; 2001 Oct; 536(Pt 2):569-82. PubMed ID: 11600690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional consequences of altered cardiac myosin isoenzymes.
    Alpert NR; Mulieri LA
    Med Sci Sports Exerc; 1986 Jun; 18(3):309-13. PubMed ID: 2941668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species.
    Hasenfuss G; Mulieri LA; Blanchard EM; Holubarsch C; Leavitt BJ; Ittleman F; Alpert NR
    Circ Res; 1991 Mar; 68(3):836-46. PubMed ID: 1742869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force, sarcomere shortening velocity and ATPase activity.
    ter Keurs HE; Deis N; Landesberg A; Nguyen TT; Livshitz L; Stuyvers B; Zhang ML
    Adv Exp Med Biol; 2003; 538():583-602; discussion 602. PubMed ID: 15098701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force transient time course in heart muscle with high and low V1 to V3 myosin isoenzyme ratio.
    Berman MR; Lord CC; Maughan DW
    J Mol Cell Cardiol; 1988 Aug; 20(8):679-87. PubMed ID: 3221408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of energy utilization in the activated myocardium.
    Alpert NR; Mulieri LA
    Fed Proc; 1986 Oct; 45(11):2597-600. PubMed ID: 2944770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin from failing and non-failing human ventricles exhibit similar contractile properties.
    Noguchi T; Camp P; Alix SL; Gorga JA; Begin KJ; Leavitt BJ; Ittleman FP; Alpert NR; LeWinter MM; VanBuren P
    J Mol Cell Cardiol; 2003 Jan; 35(1):91-7. PubMed ID: 12623303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP splitting by half the cross-bridges can explain the twitch energetics of mouse papillary muscle.
    Widén C; Barclay CJ
    J Physiol; 2006 May; 573(Pt 1):5-15. PubMed ID: 16497711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reorganization of the human and rabbit heart in response to haemodynamic overload.
    Alpert NR; Hasenfuss G; Mulieri LA; Blanchard EM; Leavitt BJ; Ittleman F
    Eur Heart J; 1992 Sep; 13 Suppl D():9-16. PubMed ID: 1396867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat, mechanics, and myosin ATPase in normal and hypertrophied heart muscle.
    Alpert NR; Mulieri LA
    Fed Proc; 1982 Feb; 41(2):192-8. PubMed ID: 6460650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocyte reorganization in hypertrophied and failing hearts.
    Alpert NR; Mulieri LA; Hasenfuss G; Holubarsch C
    Eur Heart J; 1995 May; 16 Suppl C():2-7. PubMed ID: 7556266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms.
    Palmiter KA; Tyska MJ; Dupuis DE; Alpert NR; Warshaw DM
    J Physiol; 1999 Sep; 519 Pt 3(Pt 3):669-78. PubMed ID: 10457082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation.
    Sugiura S; Kobayakawa N; Fujita H; Yamashita H; Momomura S; Chaen S; Omata M; Sugi H
    Circ Res; 1998 Jun; 82(10):1029-34. PubMed ID: 9622155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal muscle fibres.
    Metzger JM; Moss RL
    J Physiol; 1990 Sep; 428():737-50. PubMed ID: 2231431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction.
    Sweeney HL; Stull JT
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):414-8. PubMed ID: 2136951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics.
    Backx PH; Gao WD; Azan-Backx MD; Marban E
    J Physiol; 1994 May; 476(3):487-500. PubMed ID: 8057256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of isoproterenol on contractile protein function, excitation-contraction coupling, and energy turnover of isolated nonfailing human myocardium.
    Hasenfuss G; Mulieri LA; Leavitt BJ; Alpert NR
    J Mol Cell Cardiol; 1994 Nov; 26(11):1461-9. PubMed ID: 7897670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.