BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9889844)

  • 1. Contractile properties of thin (actin) filament-reconstituted muscle fibers.
    Ishiwata S; Funatsu T; Fujita H
    Adv Exp Med Biol; 1998; 453():319-28; discussion 328-9. PubMed ID: 9889844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle.
    Fujita H; Yasuda K; Niitsu S; Funatsu T; Ishiwata S
    Biophys J; 1996 Nov; 71(5):2307-18. PubMed ID: 8913572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers.
    Fujita H; Ishiwata S
    Biophys J; 1998 Sep; 75(3):1439-45. PubMed ID: 9726945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional reconstitution of thin filaments in skeletal muscle.
    Funatsu T; Anazawa T; Ishiwata S
    J Muscle Res Cell Motil; 1994 Apr; 15(2):158-71. PubMed ID: 8051289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory mechanism of smooth muscle contraction studied with gelsolin-treated strips of taenia caeci in guinea pig.
    Liou YM; Watanabe M; Yumoto M; Ishiwata S
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1024-33. PubMed ID: 19211914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin.
    Funatsu T; Higuchi H; Ishiwata S
    J Cell Biol; 1990 Jan; 110(1):53-62. PubMed ID: 2153147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropomyosin modulates pH dependence of isometric tension.
    Fujita H; Ishiwata S
    Biophys J; 1999 Sep; 77(3):1540-6. PubMed ID: 10465764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal.
    Granzier HL; Wang K
    J Gen Physiol; 1993 Feb; 101(2):235-70. PubMed ID: 7681097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of muscle contraction by Ca2+ and ADP: focusing on the auto-oscillation (SPOC).
    Ishiwata S; Shimamoto Y; Suzuki M; Sasaki D
    Adv Exp Med Biol; 2007; 592():341-58. PubMed ID: 17278378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of spontaneous oscillatory contractions in skeletal muscle.
    Smith DA; Stephenson DG
    Biophys J; 2009 May; 96(9):3682-91. PubMed ID: 19413973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres.
    Lu X; Bryant MK; Bryan KE; Rubenstein PA; Kawai M
    J Physiol; 2005 Apr; 564(Pt 1):65-82. PubMed ID: 15649975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation.
    Kawai M; Ishiwata S
    J Muscle Res Cell Motil; 2006; 27(5-7):455-68. PubMed ID: 16909198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin filament-reconstituted skinned muscle fibers for the study of muscle physiology.
    Higuchi S; Tsukasaki Y; Fukuda N; Kurihara S; Fujita H
    J Biomed Biotechnol; 2011; 2011():486021. PubMed ID: 22131807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer between points on tropomyosin and actin in skeletal muscle thin filaments: does tropomyosin move?
    Miki M; Miura T; Sano K; Kimura H; Kondo H; Ishida H; Maéda Y
    J Biochem; 1998 Jun; 123(6):1104-11. PubMed ID: 9603999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers.
    Metzger JM
    Biophys J; 1995 Apr; 68(4):1430-42. PubMed ID: 7787029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments.
    Funatsu T; Kono E; Higuchi H; Kimura S; Ishiwata S; Yoshioka T; Maruyama K; Tsukita S
    J Cell Biol; 1993 Feb; 120(3):711-24. PubMed ID: 8425898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mini-thin filaments regulated by troponin-tropomyosin.
    Gong H; Hatch V; Ali L; Lehman W; Craig R; Tobacman LS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):656-61. PubMed ID: 15644437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+- and S1-induced conformational changes of reconstituted skeletal muscle thin filaments observed by fluorescence energy transfer spectroscopy: structural evidence for three States of thin filament.
    Hai H; Sano K; Maeda K; Maéda Y; Miki M
    J Biochem; 2002 Mar; 131(3):407-18. PubMed ID: 11872170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.