BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9889854)

  • 1. Crossbridge head detachment rate constants determined from a model that explains the behavior of both weakly- and strongly-binding crossbridges.
    Schoenberg M
    Adv Exp Med Biol; 1998; 453():425-33; discussion 433-4. PubMed ID: 9889854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium muscle crossbridge behavior: the interaction of myosin crossbridges with actin.
    Schoenberg M
    Adv Biophys; 1993; 29():55-73. PubMed ID: 8140945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium muscle cross-bridge behavior. Theoretical considerations. II. Model describing the behavior of strongly-binding cross-bridges when both heads of myosin bind to the actin filament.
    Schoenberg M
    Biophys J; 1991 Sep; 60(3):679-89. PubMed ID: 1932554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers.
    Schoenberg M
    Biophys J; 1988 Jul; 54(1):135-48. PubMed ID: 3261996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of doubly attached crossbridges on the mechanical behavior of skeletal muscle fibers under equilibrium conditions.
    Tozeren A
    Biophys J; 1987 Nov; 52(5):901-6. PubMed ID: 3427193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of weakly- and strongly-binding crossbridges: implications for contraction and relaxation.
    Schoenberg M
    Adv Exp Med Biol; 1988; 226():189-202. PubMed ID: 3261486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the binding of Myosin*ADP*Pi to actin in permeabilized rabbit psoas muscle.
    Xu S; Gu J; Belknap B; White H; Yu LC
    Biophys J; 2006 Nov; 91(9):3370-82. PubMed ID: 16905611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.
    Kawai M; Saeki Y; Zhao Y
    Circ Res; 1993 Jul; 73(1):35-50. PubMed ID: 8508533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of crossbridge action: the effects of ATP, ADP and Pi.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1989 Jun; 10(3):181-96. PubMed ID: 2527246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of N-phenylmaleimide- and p-phenylenedimaleimide-reacted muscle crossbridge heads.
    Li WX; Schoenberg M
    Biochim Biophys Acta; 1998 Oct; 1367(1-3):127-33. PubMed ID: 9784622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ATP-insensitive weakly-binding crossbridges in single rabbit psoas fibers by treatment with phenylmaleimide or para-phenylenedimaleimide.
    Barnett VA; Ehrlich A; Schoenberg M
    Biophys J; 1992 Feb; 61(2):358-67. PubMed ID: 1547325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of binding of the weakly-binding crossbridge created by sulfhydryl modification has very low calcium sensitivity.
    Barnett VA; Schoenberg M
    Adv Exp Med Biol; 1993; 332():133-8; discussion 138-40. PubMed ID: 8109326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational dynamics of actin-bound intermediates of the myosin adenosine triphosphatase cycle in myofibrils.
    Berger CL; Thomas DD
    Biophys J; 1994 Jul; 67(1):250-61. PubMed ID: 7918993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin-attached and detached crossbridges in myofibrils: segregation into two populations according to their sensitivity to proteolytic digestion of myosin heavy chain.
    Assulin O; Borejdo J; Flynn C
    J Muscle Res Cell Motil; 1986 Apr; 7(2):167-78. PubMed ID: 3011856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing diastolic function by strain-dependent detachment of cardiac myosin crossbridges.
    Palmer BM; Swank DM; Miller MS; Tanner BCW; Meyer M; LeWinter MM
    J Gen Physiol; 2020 Apr; 152(4):. PubMed ID: 32197271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure of nucleotide-bearing crossbridges in situ: oblique section reconstruction of insect flight muscle in AMPPNP at 23 degrees C.
    Winkler H; Reedy MC; Reedy MK; Tregear R; Taylor KA
    J Mol Biol; 1996 Nov; 264(2):302-22. PubMed ID: 8951378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of three-state docking of myosin S1 with actin in force generation.
    Geeves MA; Conibear PB
    Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model to account for the elastic element in muscle crossbridges in terms of a bending myosin rod.
    Stewart M; McLachlan AD; Calladine CR
    Proc R Soc Lond B Biol Sci; 1987 Jan; 229(1257):381-413. PubMed ID: 2881307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle.
    Reedy MK; Reedy MC
    J Mol Biol; 1985 Sep; 185(1):145-76. PubMed ID: 4046036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments.
    Craig R; Lehman W
    J Mol Biol; 2001 Aug; 311(5):1027-36. PubMed ID: 11531337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.