These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9889977)

  • 1. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya.
    Saier MH
    Adv Microb Physiol; 1998; 40():81-136. PubMed ID: 9889977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic transmembrane solute transport systems.
    Saier MH
    Int Rev Cytol; 1999; 190():61-136. PubMed ID: 10331239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional-phylogenetic system for the classification of transport proteins.
    Saier MH
    J Cell Biochem; 1999; Suppl 32-33():84-94. PubMed ID: 10629107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases.
    Ames GF; Mimura CS; Shyamala V
    FEMS Microbiol Rev; 1990 Aug; 6(4):429-46. PubMed ID: 2147378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional-phylogenetic classification system for transmembrane solute transporters.
    Saier MH
    Microbiol Mol Biol Rev; 2000 Jun; 64(2):354-411. PubMed ID: 10839820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family.
    Hvorup R; Chang AB; Saier MH
    J Mol Microbiol Biotechnol; 2003; 6(3-4):191-205. PubMed ID: 15153772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins.
    Tseng TT; Gratwick KS; Kollman J; Park D; Nies DH; Goffeau A; Saier MH
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):107-25. PubMed ID: 10941792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily.
    Leonard CJ; Aravind L; Koonin EV
    Genome Res; 1998 Oct; 8(10):1038-47. PubMed ID: 9799791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.
    Paulsen IT; Nguyen L; Sliwinski MK; Rabus R; Saier MH
    J Mol Biol; 2000 Aug; 301(1):75-100. PubMed ID: 10926494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria.
    Reizer A; Pao GM; Saier MH
    J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes.
    Ren Q; Paulsen IT
    PLoS Comput Biol; 2005 Aug; 1(3):e27. PubMed ID: 16118665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae.
    Nelissen B; De Wachter R; Goffeau A
    FEMS Microbiol Rev; 1997 Sep; 21(2):113-34. PubMed ID: 9348664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya.
    Brochier-Armanet C; Gribaldo S; Forterre P
    Biol Direct; 2008 Dec; 3():54. PubMed ID: 19105819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of enzyme structure-function combination across three domains of life.
    Zhang Z; Tang YR
    Protein Pept Lett; 2007; 14(3):291-7. PubMed ID: 17346235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining divergence times with protein clocks.
    Doolittle RF; Feng DF; Cho G
    Biol Bull; 1999 Jun; 196(3):356-7; discussion 357-8. PubMed ID: 11536911
    [No Abstract]   [Full Text] [Related]  

  • 17. Evolution of substrate specificities in the P-type ATPase superfamily.
    Axelsen KB; Palmgren MG
    J Mol Evol; 1998 Jan; 46(1):84-101. PubMed ID: 9419228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications.
    Saurin W; Dassa E
    Protein Sci; 1994 Feb; 3(2):325-44. PubMed ID: 8003968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
    Brown JR; Doolittle WF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.