BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9890340)

  • 1. Ultrasound-Doppler technique for monitoring blood flow in the brachial artery compared with occlusion plethysmography of the forearm.
    Byström S; Jensen B; Jensen-Urstad M; Lindblad LE; Kilbom A
    Scand J Clin Lab Invest; 1998 Nov; 58(7):569-76. PubMed ID: 9890340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation.
    Berry KL; Skyrme-Jones RA; Meredith IT
    Clin Sci (Lond); 2000 Oct; 99(4):261-7. PubMed ID: 10995590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized evaluation of the peripheral blood flow during maximal vasodilatation in humans using venous occlusion plethysmography.
    Gretzer I; Inacio J; Olsson A
    Clin Physiol; 1995 Mar; 15(2):131-41. PubMed ID: 7600733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beat-by-beat forearm blood flow with Doppler ultrasound and strain-gauge plethysmography.
    Tschakovsky ME; Shoemaker JK; Hughson RL
    J Appl Physiol (1985); 1995 Sep; 79(3):713-9. PubMed ID: 8567508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of endothelial function evaluated by strain gauge plethysmography and brachial artery ultrasound.
    Irace C; Ceravolo R; Notarangelo L; Crescenzo A; Ventura G; Tamburrini O; Perticone F; Gnasso A
    Atherosclerosis; 2001 Sep; 158(1):53-9. PubMed ID: 11500174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of forearm plethysmographic methods with brachial artery pulsed Doppler flowmetry in man.
    Safar ME; Daou JE; Safavian A; London GM
    Clin Physiol; 1988 Apr; 8(2):163-70. PubMed ID: 2966030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brief muscle hypoperfusion/hyperemia: an ergogenic aid?
    Libonati JR; Howell AK; Incanno NM; Pettee KK; Glassberg HL
    J Strength Cond Res; 2001 Aug; 15(3):362-6. PubMed ID: 11710666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brachial artery characteristics and micro-vascular filtration capacity in rock climbers.
    Thompson EB; Farrow L; Hunt JE; Lewis MP; Ferguson RA
    Eur J Sport Sci; 2015; 15(4):296-304. PubMed ID: 25068834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate.
    Kruse NT; Hughes WE; Ueda K; Casey DP
    Eur J Appl Physiol; 2017 Aug; 117(8):1697-1706. PubMed ID: 28624852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forearm blood flow response to posture change in the very old: non-invasive measurement by venous occlusion plethysmography.
    Lipsitz LA; Bui M; Stiebeling M; McArdle C
    J Am Geriatr Soc; 1991 Jan; 39(1):53-9. PubMed ID: 1987257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.
    Gonzales JU; Thompson BC; Thistlethwaite JR; Harper AJ; Scheuermann BW
    J Appl Physiol (1985); 2007 Dec; 103(6):1950-7. PubMed ID: 17932302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-mediated vasodilation of the femoral and brachial artery induced by exercise in healthy nonsmoking and smoking men.
    Gaenzer H; Neumayr G; Marschang P; Sturm W; Kirchmair R; Patsch JR
    J Am Coll Cardiol; 2001 Nov; 38(5):1313-9. PubMed ID: 11691501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plethysmography without venous occlusion for measuring forearm blood flow: comparison with venous occlusive method.
    Chuah SS; Woolfson PI; Pullan BR; Lewis PS
    Clin Physiol Funct Imaging; 2004 Sep; 24(5):296-303. PubMed ID: 15383087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doppler ultrasound evaluation of the structural and hemodynamic changes in the brachial artery following two different exercise protocols.
    Ozcan H; Oztekin PS; Zergeroğlu AM; Ersöz G; Fiçicilar H; Ustüner E
    Diagn Interv Radiol; 2006 Jun; 12(2):80-4. PubMed ID: 16752354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined test of acetylcholine-mediated vasodilation of both the forearm resistance vessels and the radial artery.
    Lind L
    Clin Physiol Funct Imaging; 2013 May; 33(3):206-10. PubMed ID: 23522014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal strength training-induced improvements in forearm work efficiency are associated with reduced blood flow.
    Berg OK; Nyberg SK; Windedal TM; Wang E
    Am J Physiol Heart Circ Physiol; 2018 Apr; 314(4):H853-H862. PubMed ID: 29351462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of brachial artery blood flow across the cardiac cycle: retrograde flows during cycle ergometry.
    Green D; Cheetham C; Reed C; Dembo L; O'Driscoll G
    J Appl Physiol (1985); 2002 Jul; 93(1):361-8. PubMed ID: 12070226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and reproducibility of brachial artery flow-mediated dilation.
    Welsch MA; Allen JD; Geaghan JP
    Med Sci Sports Exerc; 2002 Jun; 34(6):960-5. PubMed ID: 12048322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.