BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9890905)

  • 1. Two short-chain dehydrogenases confer stereoselectivity for enantiomers of epoxypropane in the multiprotein epoxide carboxylating systems of Xanthobacter strain Py2 and Nocardia corallina B276.
    Allen JR; Ensign SA
    Biochemistry; 1999 Jan; 38(1):247-56. PubMed ID: 9890905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of epoxide carboxylase activity in cell extracts of Nocardia corallina B276.
    Allen JR; Ensign SA
    J Bacteriol; 1998 Apr; 180(8):2072-8. PubMed ID: 9555888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system.
    Clark DD; Allen JR; Ensign SA
    Biochemistry; 2000 Feb; 39(6):1294-304. PubMed ID: 10684609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of three protein components required for functional reconstitution of the epoxide carboxylase multienzyme complex from Xanthobacter strain Py2.
    Allen JR; Ensign SA
    J Bacteriol; 1997 May; 179(10):3110-5. PubMed ID: 9150202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification to homogeneity and reconstitution of the individual components of the epoxide carboxylase multiprotein enzyme complex from Xanthobacter strain Py2.
    Allen JR; Ensign SA
    J Biol Chem; 1997 Dec; 272(51):32121-8. PubMed ID: 9405410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for stereoselectivity in the (R)- and (S)-hydroxypropylthioethanesulfonate dehydrogenases.
    Krishnakumar AM; Nocek BP; Clark DD; Ensign SA; Peters JW
    Biochemistry; 2006 Jul; 45(29):8831-40. PubMed ID: 16846226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of two components of epoxypropane isomerase/carboxylase from Xanthobacter Py2.
    Chion CK; Leak DJ
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):499-506. PubMed ID: 8912687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aliphatic epoxide carboxylation.
    Ensign SA; Allen JR
    Annu Rev Biochem; 2003; 72():55-76. PubMed ID: 12524213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation.
    Allen JR; Clark DD; Krum JG; Ensign SA
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8432-7. PubMed ID: 10411892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones.
    Ensign SA; Small FJ; Allen JR; Sluis MK
    Arch Microbiol; 1998 Mar; 169(3):179-87. PubMed ID: 9477250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2.
    Krum JG; Ensign SA
    J Bacteriol; 2001 Apr; 183(7):2172-7. PubMed ID: 11244054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carboxylation of epoxides to beta-keto acids in cell extracts of Xanthobacter strain Py2.
    Allen JR; Ensign SA
    J Bacteriol; 1996 Mar; 178(5):1469-72. PubMed ID: 8631727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel type of pyridine nucleotide-disulfide oxidoreductase is essential for NAD+- and NADPH-dependent degradation of epoxyalkanes by Xanthobacter strain Py2.
    Swaving J; de Bont JA; Westphal A; de Kok A
    J Bacteriol; 1996 Nov; 178(22):6644-6. PubMed ID: 8932325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme m-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism.
    Boyd JM; Ellsworth A; Ensign SA
    J Bacteriol; 2006 Dec; 188(23):8062-9. PubMed ID: 16997966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of S-HPCDH reveal determinants of stereospecificity for R- and S-hydroxypropyl-coenzyme M dehydrogenases.
    Bakelar JW; Sliwa DA; Johnson SJ
    Arch Biochem Biophys; 2013 May; 533(1-2):62-8. PubMed ID: 23474457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for enantioselectivity in the (R)- and (S)-hydroxypropylthioethanesulfonate dehydrogenases, a unique pair of stereoselective short-chain dehydrogenases/reductases involved in aliphatic epoxide carboxylation.
    Sliwa DA; Krishnakumar AM; Peters JW; Ensign SA
    Biochemistry; 2010 Apr; 49(16):3487-98. PubMed ID: 20302306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stereoselectivity and catalytic properties of Xanthobacter autotrophicus 2-[(R)-2-Hydroxypropylthio]ethanesulfonate dehydrogenase are controlled by interactions between C-terminal arginine residues and the sulfonate of coenzyme M.
    Clark DD; Boyd JM; Ensign SA
    Biochemistry; 2004 Jun; 43(21):6763-71. PubMed ID: 15157110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.
    Sluis MK; Small FJ; Allen JR; Ensign SA
    J Bacteriol; 1996 Jul; 178(14):4020-6. PubMed ID: 8763926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary X-ray analysis of an acetone carboxylase from Xanthobacter autotrophicus strain Py2.
    Nocek B; Boyd J; Ensign SA; Peters JW
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):385-7. PubMed ID: 14747734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkene monooxygenase from Xanthobacter strain Py2. Purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes.
    Small FJ; Ensign SA
    J Biol Chem; 1997 Oct; 272(40):24913-20. PubMed ID: 9312093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.