These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 9890930)

  • 61. The functional asymmetry of cosN, the nicking site for bacteriophage lambda DNA packaging, is dependent on the terminase binding site, cosB.
    Hang JQ; Catalano CE; Feiss M
    Biochemistry; 2001 Nov; 40(44):13370-7. PubMed ID: 11683647
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetics of critical contacts and clashes in the DNA packaging specificities of bacteriophages λ and 21.
    Sippy J; Patel P; Vahanian N; Sippy R; Feiss M
    Virology; 2015 Feb; 476():115-123. PubMed ID: 25543962
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Separate sites for binding and nicking of bacteriophage lambda DNA by terminase.
    Feiss M; Kobayashi I; Widner W
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):955-9. PubMed ID: 6302676
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of gpFI protein in DNA packaging by bacteriophage lambda.
    Catalano CE; Tomka MA
    Biochemistry; 1995 Aug; 34(31):10036-42. PubMed ID: 7632676
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vivo packaging of bacteriophage lambda monomeric chromosomes.
    Thomason LC; Thaler DS; Stahl MM; Stahl FW
    J Mol Biol; 1997 Mar; 267(1):75-87. PubMed ID: 9096208
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetic analysis of the genome packaging reaction in bacteriophage lambda.
    Yang Q; Catalano CE; Maluf NK
    Biochemistry; 2009 Nov; 48(45):10705-15. PubMed ID: 19788336
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The in vitro translocase activity of lambda terminase and its subunits. Kinetic and biochemical analysis.
    Rubinchik S; Parris W; Gold M
    J Biol Chem; 1995 Aug; 270(34):20059-66. PubMed ID: 7650023
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The lambda terminase enzyme measures the point of its endonucleolytic attack 47 +/- 2 bp away from its site of specific DNA binding, the R site.
    Higgins RR; Becker A
    EMBO J; 1994 Dec; 13(24):6162-71. PubMed ID: 7813453
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Equilibrium and kinetic binding analysis of the N-terminal domain of the Pf1 gene 5 protein and its interaction with single-stranded DNA.
    Bogdarina I; Fox DG; Kneale GG
    J Mol Biol; 1998 Jan; 275(3):443-52. PubMed ID: 9466922
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Linkage between operator binding and dimer to octamer self-assembly of bacteriophage lambda cI repressor.
    Rusinova E; Ross JB; Laue TM; Sowers LC; Senear DF
    Biochemistry; 1997 Oct; 36(42):12994-3003. PubMed ID: 9335560
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The terminase of bacteriophage lambda. Functional domains for cosB binding and multimer assembly.
    Frackman S; Siegele DA; Feiss M
    J Mol Biol; 1985 May; 183(2):225-38. PubMed ID: 2989542
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of the interaction domain of the small terminase subunit pUL89 with the large subunit pUL56 of human cytomegalovirus.
    Thoma C; Borst E; Messerle M; Rieger M; Hwang JS; Bogner E
    Biochemistry; 2006 Jul; 45(29):8855-63. PubMed ID: 16846228
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetic evidence that recognition of cosQ, the signal for termination of phage lambda DNA packaging, depends on the extent of head filling.
    Cue D; Feiss M
    Genetics; 1997 Sep; 147(1):7-17. PubMed ID: 9286664
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Coupled energetics of lambda cro repressor self-assembly and site-specific DNA operator binding II: cooperative interactions of cro dimers.
    Darling PJ; Holt JM; Ackers GK
    J Mol Biol; 2000 Sep; 302(3):625-38. PubMed ID: 10986123
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Slow assembly and disassembly of lambda Cro repressor dimers.
    Jia H; Satumba WJ; Bidwell GL; Mossing MC
    J Mol Biol; 2005 Jul; 350(5):919-29. PubMed ID: 15982668
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vitro packaging of DNA of the Bacillus subtilis bacteriophage SPP1.
    Dröge A; Tavares P
    J Mol Biol; 2000 Feb; 296(1):103-15. PubMed ID: 10656820
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The in vitro endonuclease activity of gene product A, the large subunit of the bacteriophage lambda terminase, and its relationship to the endonuclease activity of the holoenzyme.
    Rubinchik S; Parris W; Gold M
    J Biol Chem; 1994 May; 269(18):13575-85. PubMed ID: 8175793
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA.
    Love JJ; Li X; Chung J; Dyson HJ; Wright PE
    Biochemistry; 2004 Jul; 43(27):8725-34. PubMed ID: 15236581
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The in vitro ATPases of bacteriophage lambda terminase and its large subunit, gene product A. The relationship with their DNA helicase and packaging activities.
    Rubinchik S; Parris W; Gold M
    J Biol Chem; 1994 May; 269(18):13586-93. PubMed ID: 8175794
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DNA Topology and the Initiation of Virus DNA Packaging.
    Oh CS; Sippy J; Charbonneau B; Crow Hutchinson J; Mejia-Romero OE; Barton M; Patel P; Sippy R; Feiss M
    PLoS One; 2016; 11(5):e0154785. PubMed ID: 27144448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.