These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 9891361)
1. Confocal microscopic analysis of morphogenetic movements. Cooper MS; D'Amico LA; Henry CA Methods Cell Biol; 1999; 59():179-204. PubMed ID: 9891361 [TBL] [Abstract][Full Text] [Related]
2. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Cooper MS; Szeto DP; Sommers-Herivel G; Topczewski J; Solnica-Krezel L; Kang HC; Johnson I; Kimelman D Dev Dyn; 2005 Feb; 232(2):359-68. PubMed ID: 15614774 [TBL] [Abstract][Full Text] [Related]
6. Labeling and imaging cells in the zebrafish hindbrain. Jayachandran P; Hong E; Brewster R J Vis Exp; 2010 Jul; (41):. PubMed ID: 20689510 [TBL] [Abstract][Full Text] [Related]
7. Spatially distinct domains of cell behavior in the zebrafish organizer region. D'Amico LA; Cooper MS Biochem Cell Biol; 1997; 75(5):563-77. PubMed ID: 9551180 [TBL] [Abstract][Full Text] [Related]
8. Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy. McGurk PD; Lovely CB; Eberhart JK J Vis Exp; 2014 Jan; (83):e51190. PubMed ID: 24514435 [TBL] [Abstract][Full Text] [Related]
9. Zebrafish as a model to study chemokine function. Kochhan E; Siekmann AF Methods Mol Biol; 2013; 1013():145-59. PubMed ID: 23625497 [TBL] [Abstract][Full Text] [Related]
10. Imaging retinal progenitor lineages in developing zebrafish embryos. Jusuf P; Harris WA; Poggi L Cold Spring Harb Protoc; 2013 Mar; 2013(3):. PubMed ID: 23457345 [TBL] [Abstract][Full Text] [Related]
12. Imaging Subcellular Structures in the Living Zebrafish Embryo. Engerer P; Plucinska G; Thong R; Trovò L; Paquet D; Godinho L J Vis Exp; 2016 Apr; (110):e53456. PubMed ID: 27078038 [TBL] [Abstract][Full Text] [Related]
13. The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca Webb SE; Miller AL Methods Mol Biol; 2019; 1929():73-93. PubMed ID: 30710268 [TBL] [Abstract][Full Text] [Related]
14. Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. D'Amico LA; Cooper MS Dev Dyn; 2001 Dec; 222(4):611-24. PubMed ID: 11748830 [TBL] [Abstract][Full Text] [Related]
15. Visualizing the Developing Brain in Living Zebrafish using Brainbow and Time-lapse Confocal Imaging. Cook ZT; Brockway NL; Weissman TA J Vis Exp; 2020 Mar; (157):. PubMed ID: 32250362 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Zebrafish Kidney Development with Time-lapse Imaging Using a Dissecting Microscope Equipped for Optical Sectioning. Perner B; Schnerwitzki D; Graf M; Englert C J Vis Exp; 2016 Apr; (110):e53921. PubMed ID: 27078207 [TBL] [Abstract][Full Text] [Related]
18. Live imaging of cell motility and actin cytoskeleton of individual neurons and neural crest cells in zebrafish embryos. Andersen E; Asuri N; Clay M; Halloran M J Vis Exp; 2010 Feb; (36):. PubMed ID: 20130524 [TBL] [Abstract][Full Text] [Related]
19. 4D confocal microscopy of Dictyostelium discoideum morphogenesis and its presentation on the Internet. Zimmermann T; Siegert F Dev Genes Evol; 1998 Sep; 208(7):411-20. PubMed ID: 9732556 [TBL] [Abstract][Full Text] [Related]
20. In vivo imaging of synaptogenesis in zebrafish. Jontes JD; Emond MR Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]