These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1171 related articles for article (PubMed ID: 9891780)
1. Functions of lipid rafts in biological membranes. Brown DA; London E Annu Rev Cell Dev Biol; 1998; 14():111-36. PubMed ID: 9891780 [TBL] [Abstract][Full Text] [Related]
3. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins]. Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343 [TBL] [Abstract][Full Text] [Related]
4. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes. Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971 [TBL] [Abstract][Full Text] [Related]
5. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Brown DA; London E Biochem Biophys Res Commun; 1997 Nov; 240(1):1-7. PubMed ID: 9367871 [TBL] [Abstract][Full Text] [Related]
6. Lipid microdomains and insulin resistance: is there a connection? Ikonen E; Vainio S Sci STKE; 2005 Jan; 2005(268):pe3. PubMed ID: 15671480 [TBL] [Abstract][Full Text] [Related]
7. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Ahmed SN; Brown DA; London E Biochemistry; 1997 Sep; 36(36):10944-53. PubMed ID: 9283086 [TBL] [Abstract][Full Text] [Related]
8. The state of lipid rafts: from model membranes to cells. Edidin M Annu Rev Biophys Biomol Struct; 2003; 32():257-83. PubMed ID: 12543707 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Subczynski WK; Kusumi A Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777 [TBL] [Abstract][Full Text] [Related]
10. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Rietveld A; Simons K Biochim Biophys Acta; 1998 Nov; 1376(3):467-79. PubMed ID: 9805010 [TBL] [Abstract][Full Text] [Related]
11. Lipid rafts as a membrane-organizing principle. Lingwood D; Simons K Science; 2010 Jan; 327(5961):46-50. PubMed ID: 20044567 [TBL] [Abstract][Full Text] [Related]
12. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Barenholz Y Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621 [TBL] [Abstract][Full Text] [Related]
13. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. van der Goot FG; Harder T Semin Immunol; 2001 Apr; 13(2):89-97. PubMed ID: 11308292 [TBL] [Abstract][Full Text] [Related]
14. Structure and cholesterol dynamics of caveolae/raft and nonraft plasma membrane domains. Gallegos AM; Storey SM; Kier AB; Schroeder F; Ball JM Biochemistry; 2006 Oct; 45(39):12100-16. PubMed ID: 17002310 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781 [TBL] [Abstract][Full Text] [Related]
16. Uncoupling of the cholera toxin-G(M1) ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. Wolf AA; Fujinaga Y; Lencer WI J Biol Chem; 2002 May; 277(18):16249-56. PubMed ID: 11859071 [TBL] [Abstract][Full Text] [Related]