These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9891798)

  • 21. Analysis of the cbbXYZ operon in Rhodobacter sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1997 Feb; 179(3):663-9. PubMed ID: 9006018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymes and genes of microbial autotrophy.
    Codd GA; Vakeria D
    Microbiol Sci; 1987 May; 4(5):154-9. PubMed ID: 2856385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporation of Functional Rubisco Activases into Engineered Carboxysomes to Enhance Carbon Fixation.
    Chen T; Fang Y; Jiang Q; Dykes GF; Lin Y; Price GD; Long BM; Liu LN
    ACS Synth Biol; 2022 Jan; 11(1):154-161. PubMed ID: 34664944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Enzymatic determination of the autotrophic fixation of carbon dioxide in aerobic and anaerobic ecosystems].
    Vedenina IIa; Zavarzin GA
    Mikrobiologiia; 1975; 44(5):943-5. PubMed ID: 1207512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ.
    Sutter M; Roberts EW; Gonzalez RC; Bates C; Dawoud S; Landry K; Cannon GC; Heinhorst S; Kerfeld CA
    Sci Rep; 2015 Nov; 5():16243. PubMed ID: 26538283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization and mapping of CO2 fixation genes within two gene clusters in Rhodobacter sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1988 May; 170(5):2153-8. PubMed ID: 2834328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.
    Satagopan S; Tabita FR
    FEBS J; 2016 Aug; 283(15):2869-80. PubMed ID: 27261087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carboxysomes: metabolic modules for CO2 fixation.
    Turmo A; Gonzalez-Esquer CR; Kerfeld CA
    FEMS Microbiol Lett; 2017 Oct; 364(18):. PubMed ID: 28934381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities.
    Horken KM; Tabita FR
    Arch Biochem Biophys; 1999 Jan; 361(2):183-94. PubMed ID: 9882445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides.
    Hallenbeck PL; Lerchen R; Hessler P; Kaplan S
    J Bacteriol; 1990 Apr; 172(4):1749-61. PubMed ID: 2156801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002.
    De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y
    Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of cbb gene transcription levels of four typical sulfur-oxidizing bacteria to the CO2 concentration and its effect on their carbon fixation efficiency during sulfur oxidation.
    Wang YN; Wang L; Tsang YF; Fu X; Hu J; Li H; Le Y
    Enzyme Microb Technol; 2016 Oct; 92():31-40. PubMed ID: 27542742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species.
    Menon BB; Dou Z; Heinhorst S; Shively JM; Cannon GC
    PLoS One; 2008; 3(10):e3570. PubMed ID: 18974784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria.
    Dijkhuizen L; Harder W
    Antonie Van Leeuwenhoek; 1984; 50(5-6):473-87. PubMed ID: 6099093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the high-specificity Rubisco genes by the third CbbR-type regulator in a hydrogen-oxidizing bacterium Hydrogenovibriomarinus.
    Toyoda K; Yoshizawa Y; Ishii M; Arai H
    J Biosci Bioeng; 2022 Dec; 134(6):496-500. PubMed ID: 36182634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species.
    Caldwell PE; MacLean MR; Norris PR
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2231-2240. PubMed ID: 17600067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-based organelles in bacteria: carboxysomes and related microcompartments.
    Yeates TO; Kerfeld CA; Heinhorst S; Cannon GC; Shively JM
    Nat Rev Microbiol; 2008 Sep; 6(9):681-91. PubMed ID: 18679172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression and regulation of Bradyrhizobium japonicum and Xanthobacter flavus CO2 fixation genes in a photosynthetic bacterial host.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Feb; 175(3):866-9. PubMed ID: 8423157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus.
    Tichi MA; Tabita FR
    J Bacteriol; 2002 Apr; 184(7):1905-15. PubMed ID: 11889097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria.
    Rubin-Blum M; Dubilier N; Kleiner M
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30602523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.