These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9892040)

  • 41. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: implications for oral carcinogenesis.
    Lee SS; Crabb SJ; Janghra N; Carlberg C; Williams AC; Cutress RI; Packham G; Hague A
    Exp Cell Res; 2007 Sep; 313(15):3222-38. PubMed ID: 17662274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nuclear receptor coactivators facilitate vitamin D receptor homodimer action on direct repeat hormone response elements.
    Takeshita A; Ozawa Y; Chin WW
    Endocrinology; 2000 Mar; 141(3):1281-4. PubMed ID: 10698207
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D.
    Erben RG; Soegiarto DW; Weber K; Zeitz U; Lieberherr M; Gniadecki R; Möller G; Adamski J; Balling R
    Mol Endocrinol; 2002 Jul; 16(7):1524-37. PubMed ID: 12089348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vitamin D and alternative splicing of RNA.
    Zhou R; Chun RF; Lisse TS; Garcia AJ; Xu J; Adams JS; Hewison M
    J Steroid Biochem Mol Biol; 2015 Apr; 148():310-7. PubMed ID: 25447737
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of an autonomous transactivation domain in helix H3 of the vitamin D receptor.
    Kraichely DM; Nakai YD; MacDonald PN
    J Cell Biochem; 1999 Oct; 75(1):82-92. PubMed ID: 10462707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New mechanisms of regulation of the genomic actions of vitamin D in bone cells: interaction of the vitamin D receptor with non-classical response elements and with the multifunctional protein, calreticulin.
    St-Arnaud R; Candeliere GA; Dedhar S
    Front Biosci; 1996 Aug; 1():d177-88. PubMed ID: 9159226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vitamin D analogs as modulators of vitamin D receptor action.
    Peleg S; Posner GH
    Curr Top Med Chem; 2003; 3(14):1555-72. PubMed ID: 14683515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RIPK1 binds to vitamin D receptor and decreases vitamin D-induced growth suppression.
    Quarni W; Lungchukiet P; Tse A; Wang P; Sun Y; Kasiappan R; Wu JY; Zhang X; Bai W
    J Steroid Biochem Mol Biol; 2017 Oct; 173():157-167. PubMed ID: 28159673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Altered vitamin D metabolism and receptor interaction with the target genes in renal failure: calcitriol receptor interaction with its target gene in renal failure.
    Hsu CH; Patel SR
    Curr Opin Nephrol Hypertens; 1995 Jul; 4(4):302-6. PubMed ID: 7552094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions.
    Rachez C; Freedman LP
    Gene; 2000 Apr; 246(1-2):9-21. PubMed ID: 10767523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcifediol: Mechanisms of Action.
    Donati S; Palmini G; Aurilia C; Falsetti I; Marini F; Giusti F; Iantomasi T; Brandi ML
    Nutrients; 2023 Oct; 15(20):. PubMed ID: 37892484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response.
    Loughran G; Jungreis I; Tzani I; Power M; Dmitriev RI; Ivanov IP; Kellis M; Atkins JF
    J Biol Chem; 2018 Mar; 293(12):4434-4444. PubMed ID: 29386352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure-based design of selective agonists for a rickets-associated mutant of the vitamin d receptor.
    Swann SL; Bergh J; Farach-Carson MC; Ocasio CA; Koh JT
    J Am Chem Soc; 2002 Nov; 124(46):13795-805. PubMed ID: 12431109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure function studies: identification of vitamin D analogs for the ligand-binding domains of important proteins in the vitamin D-endocrine system.
    Norman AW; Silva FR
    Rev Endocr Metab Disord; 2001 Apr; 2(2):229-38. PubMed ID: 11705328
    [No Abstract]   [Full Text] [Related]  

  • 55. Hormone-dependent translocation of vitamin D receptors is linked to transactivation.
    Racz A; Barsony J
    J Biol Chem; 1999 Jul; 274(27):19352-60. PubMed ID: 10383447
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential modulation of hepatitis C virus replication and innate immune pathways by synthetic calcitriol-analogs.
    Saleh M; Welsch C; Cai C; Döring C; Gouttenoire J; Friedrich J; Haselow K; Sarrazin C; Badenhoop K; Moradpour D; Zeuzem S; Rueschenbaum S; Lange CM
    J Steroid Biochem Mol Biol; 2018 Oct; 183():142-151. PubMed ID: 29885880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibitors for the Vitamin D Receptor-Coregulator Interaction.
    Teske KA; Yu O; Arnold LA
    Vitam Horm; 2016; 100():45-82. PubMed ID: 26827948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cutting edge: progesterone directly upregulates vitamin d receptor gene expression for efficient regulation of T cells by calcitriol.
    Thangamani S; Kim M; Son Y; Huang X; Kim H; Lee JH; Cho J; Ulrich B; Broxmeyer HE; Kim CH
    J Immunol; 2015 Feb; 194(3):883-6. PubMed ID: 25548222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic analysis of VDR-mediated renin suppression.
    Nakane M; Ma J; Ruan X; Kroeger PE; Wu-Wong R
    Nephron Physiol; 2007; 107(2):p35-44. PubMed ID: 17687191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New Approaches to Assess Mechanisms of Action of Selective Vitamin D Analogues.
    Pike JW; Meyer MB
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.