These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9892416)

  • 1. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model.
    Thompson JL; Balog EM; Fitts RH; Riley DA
    Anat Rec; 1999 Jan; 254(1):39-52. PubMed ID: 9892416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading.
    Riley DA; Ellis S; Giometti CS; Hoh JF; Ilyina-Kakueva EI; Oganov VS; Slocum GR; Bain JL; Sedlak FR
    J Appl Physiol (1985); 1992 Aug; 73(2 Suppl):33S-43S. PubMed ID: 1382050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles.
    Vijayan K; Thompson JL; Norenberg KM; Fitts RH; Riley DA
    J Appl Physiol (1985); 2001 Mar; 90(3):770-6. PubMed ID: 11181582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcomere lesion damage occurs mainly in slow fibers of reloaded rat adductor longus muscles.
    Vijayan K; Thompson JL; Riley DA
    J Appl Physiol (1985); 1998 Sep; 85(3):1017-23. PubMed ID: 9729578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of spaceflight and hindlimb suspension unloading induced sarcomere damage and repair.
    Riley DA; Thompson JL; Krippendorf BB; Slocum GR
    Basic Appl Myol; 1995; 5(2):139-45. PubMed ID: 11539271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal changes in sarcomere lesions of rat adductor longus muscles during hindlimb reloading.
    Krippendorf BB; Riley DA
    Anat Rec; 1994 Mar; 238(3):304-10. PubMed ID: 8179211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive stretch inhibits central corelike lesion formation in the soleus muscles of hindlimb-suspended unloaded rats.
    Baewer DV; Hoffman M; Romatowski JG; Bain JL; Fitts RH; Riley DA
    J Appl Physiol (1985); 2004 Sep; 97(3):930-4. PubMed ID: 15133001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity.
    Riley DA; Bain JL; Romatowski JG; Fitts RH
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C360-5. PubMed ID: 15469952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight.
    Riley DA; Bain JL; Thompson JL; Fitts RH; Widrick JJ; Trappe SW; Trappe TA; Costill DL
    J Appl Physiol (1985); 2000 Feb; 88(2):567-72. PubMed ID: 10658024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading.
    Ingalls CP; Warren GL; Armstrong RB
    J Appl Physiol (1985); 1999 Jul; 87(1):386-90. PubMed ID: 10409599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin: Formation and maintenance of thick filaments.
    Ojima K
    Anim Sci J; 2019 Jul; 90(7):801-807. PubMed ID: 31134719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microgravity on muscle and cerebral cortex: a suggested interaction.
    D'Amelio F; Fox RA; Wu LC; Daunton NG; Corcoran ML
    Adv Space Res; 1998; 22(2):235-44. PubMed ID: 11541401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmental muscle fiber lesions after repetitive eccentric contractions.
    Fridén J; Lieber RL
    Cell Tissue Res; 1998 Jul; 293(1):165-71. PubMed ID: 9634608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesions in the rat soleus muscle following eccentrically biased exercise.
    Ogilvie RW; Armstrong RB; Baird KE; Bottoms CL
    Am J Anat; 1988 Aug; 182(4):335-46. PubMed ID: 3189194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcolemmal disruption in reloaded atrophic skeletal muscle.
    Kasper CE
    J Appl Physiol (1985); 1995 Aug; 79(2):607-14. PubMed ID: 7592225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle.
    Wei JH; Chang NC; Chen SP; Geraldine P; Jayakumar T; Fong TH
    Biochem Biophys Res Commun; 2015 Oct; 466(1):95-102. PubMed ID: 26325472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential adaptation to weightlessness of functional and structural characteristics of rat hindlimb muscles.
    Stevens L; Picquet F; Catinot MP; Mounier Y
    J Gravit Physiol; 1996 Sep; 3(2):54-7. PubMed ID: 11540282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical myofiber typing and high-resolution myofibrillar lesion detection in LR white embedded muscle.
    Thompson JL; Vijayan K; Riley DA
    Microsc Res Tech; 2000 Jun; 49(6):589-95. PubMed ID: 10862115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thick filament movement and isometric tension in activated skeletal muscle.
    Horowits R; Podolsky RJ
    Biophys J; 1988 Jul; 54(1):165-71. PubMed ID: 3416026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.