These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9892631)

  • 1. Protein kinase A takes center stage in ATP-dependent insulin secretion.
    Blanpied TA; Augustine GJ
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):329-31. PubMed ID: 9892631
    [No Abstract]   [Full Text] [Related]  

  • 2. [Molecular mechanisms of insulin secretion].
    Minami K; Shibasaki T; Miki T; Seino S
    Seikagaku; 2003 Oct; 75(10):1312-23. PubMed ID: 14635523
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanism of glucose-induced insulin secretion.
    Hedeskov CJ
    Physiol Rev; 1980 Apr; 60(2):442-509. PubMed ID: 6247727
    [No Abstract]   [Full Text] [Related]  

  • 4. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis.
    Shibasaki T; Sunaga Y; Fujimoto K; Kashima Y; Seino S
    J Biol Chem; 2004 Feb; 279(9):7956-61. PubMed ID: 14660679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emiocytosis: a possible molecular mechanism.
    Lazarus NR; Davis B
    Proc R Soc Med; 1974 Sep; 67(9):841-2. PubMed ID: 4372639
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the K+ATP channel-dependent pathway.
    Thams P; Anwar MR; Capito K
    Eur J Endocrinol; 2005 Apr; 152(4):671-7. PubMed ID: 15817925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-priming actions of ATP on Ca2+-dependent exocytosis in pancreatic beta cells.
    Takahashi N; Kadowaki T; Yazaki Y; Ellis-Davies GC; Miyashita Y; Kasai H
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):760-5. PubMed ID: 9892707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent stimulation of insulin exocytosis by 3',5'-cyclic adenosine monophosphate in the rat islet beta-cell.
    Yamada S; Komatsu M; Sato Y; Yamauchi K; Kojima I; Aizawa T; Hashizume K
    Endocrinology; 2002 Nov; 143(11):4203-9. PubMed ID: 12399413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+/calmodulin and cyclic 3,5' adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic beta-cell.
    Hisatomi M; Hidaka H; Niki I
    Endocrinology; 1996 Nov; 137(11):4644-9. PubMed ID: 8895328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets.
    Hatakeyama H; Kishimoto T; Nemoto T; Kasai H; Takahashi N
    J Physiol; 2006 Jan; 570(Pt 2):271-82. PubMed ID: 16284079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose dependence of insulinotropic actions of pituitary adenylate cyclase-activating polypeptide in insulin-secreting INS-1 cells.
    Rosengren A; Filipsson K; Jing XJ; Reimer MK; Renström E
    Pflugers Arch; 2002 Jul; 444(4):556-67. PubMed ID: 12136276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets.
    Alenkvist I; Dyachok O; Tian G; Li J; Mehrabanfar S; Jin Y; Birnir B; Tengholm A; Welsh M
    J Endocrinol; 2014 Dec; 223(3):267-75. PubMed ID: 25274988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors.
    Gromada J; Ding WG; Barg S; Renström E; Rorsman P
    Pflugers Arch; 1997 Sep; 434(5):515-24. PubMed ID: 9242714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of insulin secretion: a model involving Ca2+, cAMP and diacylglycerol.
    Zawalich WS; Rasmussen H
    Mol Cell Endocrinol; 1990 Apr; 70(2):119-37. PubMed ID: 2161360
    [No Abstract]   [Full Text] [Related]  

  • 15. Fast and cAMP-sensitive mode of Ca(2+)-dependent exocytosis in pancreatic beta-cells.
    Kasai H; Suzuki T; Liu TT; Kishimoto T; Takahashi N
    Diabetes; 2002 Feb; 51 Suppl 1():S19-24. PubMed ID: 11815452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis.
    Donelan MJ; Morfini G; Julyan R; Sommers S; Hays L; Kajio H; Briaud I; Easom RA; Molkentin JD; Brady ST; Rhodes CJ
    J Biol Chem; 2002 Jul; 277(27):24232-42. PubMed ID: 11978799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exocytosis in islet beta-cells.
    Kasai H; Hatakeyama H; Ohno M; Takahashi N
    Adv Exp Med Biol; 2010; 654():305-38. PubMed ID: 20217504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine nucleotides in the secretory granule fraction of rat islets.
    Leitner JW; Sussman KE; Vatter AE; Schneider FH
    Endocrinology; 1975 Mar; 96(3):662-77. PubMed ID: 163731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP-dependent protein phosphorylation and insulin secretion in intact islets of Langerhans.
    Christie MR; Ashcroft SJ
    Biochem J; 1984 Feb; 218(1):87-99. PubMed ID: 6201163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP signaling in pancreatic islets.
    Furman B; Ong WK; Pyne NJ
    Adv Exp Med Biol; 2010; 654():281-304. PubMed ID: 20217503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.