These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9892639)

  • 41. The binding site for ribosomal protein S8 in 16S rRNA and spc mRNA from Escherichia coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction.
    Wu H; Jiang L; Zimmermann RA
    Nucleic Acids Res; 1994 May; 22(9):1687-95. PubMed ID: 7515489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.
    Grondek JF; Culver GM
    RNA; 2004 Dec; 10(12):1861-6. PubMed ID: 15525707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA folding pathways and the self-assembly of ribosomes.
    Woodson SA
    Acc Chem Res; 2011 Dec; 44(12):1312-9. PubMed ID: 21714483
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organization of the 16S rRNA around its 5' terminus determined by photochemical crosslinking in the 30S ribosomal subunit.
    Juzumiene DI; Wollenzien P
    RNA; 2000 Jan; 6(1):26-40. PubMed ID: 10668796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation.
    Wilson KS; Nechifor R
    J Mol Biol; 2004 Mar; 337(1):15-30. PubMed ID: 15001349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA.
    Tanaka I; Nakagawa A; Hosaka H; Wakatsuki S; Mueller F; Brimacombe R
    RNA; 1998 May; 4(5):542-50. PubMed ID: 9582096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ribosomal small subunit domains radiate from a central core.
    Gulen B; Petrov AS; Okafor CD; Vander Wood D; O'Neill EB; Hud NV; Williams LD
    Sci Rep; 2016 Feb; 6():20885. PubMed ID: 26876483
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The RNA binding site of S8 ribosomal protein of Escherichia coli: Selex and hydroxyl radical probing studies.
    Moine H; Cachia C; Westhof E; Ehresmann B; Ehresmann C
    RNA; 1997 Mar; 3(3):255-68. PubMed ID: 9056763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ribosomal protein S18e as a putative molecular staple for the 18S rRNA 3'-major domain core.
    Ilin AA; Malygin AA; Karpova GG
    Biochim Biophys Acta; 2011 Apr; 1814(4):505-12. PubMed ID: 21256985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new technique for the characterization of long-range tertiary contacts in large RNA molecules: insertion of a photolabel at a selected position in 16S rRNA within the Escherichia coli ribosome.
    Baranov PV; Dokudovskaya SS; Oretskaya TS; Dontsova OA; Bogdanov AA; Brimacombe R
    Nucleic Acids Res; 1997 Jun; 25(12):2266-73. PubMed ID: 9171076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The absence of modified nucleotides affects both in vitro assembly and in vitro function of the 30S ribosomal subunit of Escherichia coli.
    Cunningham PR; Richard RB; Weitzmann CJ; Nurse K; Ofengand J
    Biochimie; 1991 Jun; 73(6):789-96. PubMed ID: 1764523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions.
    Amarantos I; Zarkadis IK; Kalpaxis DL
    Nucleic Acids Res; 2002 Jul; 30(13):2832-43. PubMed ID: 12087167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals.
    Nguyenle T; Laurberg M; Brenowitz M; Noller HF
    J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reassembly of active 30S ribosomal subunits with an unmethylated in vitro transcribed 16S rRNA.
    Melançon P; Gravel M; Boileau G; Brakier-Gingras L
    Biochem Cell Biol; 1987 Dec; 65(12):1022-30. PubMed ID: 3331285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The central pseudoknot in 16S ribosomal RNA is needed for ribosome stability but is not essential for 30S initiation complex formation.
    Poot RA; Pleij CW; van Duin J
    Nucleic Acids Res; 1996 Oct; 24(19):3670-6. PubMed ID: 8871543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A minimized rRNA-binding site for ribosomal protein S4 and its implications for 30S assembly.
    Bellur DL; Woodson SA
    Nucleic Acids Res; 2009 Apr; 37(6):1886-96. PubMed ID: 19190093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Initiation factor 3-induced structural changes in the 30 S ribosomal subunit and in complexes containing tRNA(f)(Met) and mRNA.
    Shapkina TG; Dolan MA; Babin P; Wollenzien P
    J Mol Biol; 2000 Jun; 299(3):615-28. PubMed ID: 10835272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exact determination of UV-induced crosslinks in 16S ribosomal RNA in 30S ribosomal subunits.
    Wilms C; Noah JW; Zhong D; Wollenzien P
    RNA; 1997 Jun; 3(6):602-12. PubMed ID: 9174095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Binding of human ribosomal protein S13 to the central domain of 18S rRNA].
    Ivanov AV; Malygin AA; Karpova GG
    Mol Biol (Mosk); 2011; 45(6):1046-54. PubMed ID: 22295575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three dimensional model for the 16S ribosomal RNA that incorporates information for the mRNA track.
    Wollenzien P; Juzumiene D; Shapkina T; Minchew P
    Nucleic Acids Symp Ser; 1995; (33):76-8. PubMed ID: 8643405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.