These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9892658)

  • 41. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles.
    Pinheiro TJ; Elöve GA; Watts A; Roder H
    Biochemistry; 1997 Oct; 36(42):13122-32. PubMed ID: 9335575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Denaturant dependence of equilibrium unfolding intermediates and denatured state structure of horse ferricytochrome c.
    Russell BS; Bren KL
    J Biol Inorg Chem; 2002 Sep; 7(7-8):909-16. PubMed ID: 12203029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of ligand substitution in ferrocytochrome c folding.
    Telford JR; Tezcan FA; Gray HB; Winkler JR
    Biochemistry; 1999 Feb; 38(6):1944-9. PubMed ID: 10026276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics and mechanism of the folding of cytochrome c.
    Pryse KM; Bruckman TG; Maxfield BW; Elson EL
    Biochemistry; 1992 Jun; 31(22):5127-36. PubMed ID: 1318745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of the pH-dependent stability and millisecond folding kinetics of horse cytochrome c.
    Jain R; Kumar R; Kumar S; Chhabra R; Agarwal MC; Kumar R
    Arch Biochem Biophys; 2015 Nov; 585():52-63. PubMed ID: 26386309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Volume and compressibility changes accompanying thermally-induced native-to-unfolded and molten globule-to-unfolded transitions of cytochrome c: a high pressure study.
    Dubins DN; Filfil R; Macgregor RB; Chalikian TV
    Biochemistry; 2003 Jul; 42(29):8671-8. PubMed ID: 12873126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique.
    Abbruzzetti S; Viappiani C; Small JR; Libertini LJ; Small EW
    J Am Chem Soc; 2001 Jul; 123(27):6649-53. PubMed ID: 11439052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Volumetric characterizations of the native, molten globule and unfolded states of cytochrome c at acidic pH.
    Chalikian TV; Gindikin VS; Breslauer KJ
    J Mol Biol; 1995 Jul; 250(2):291-306. PubMed ID: 7608975
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic intermediates in the formation of the cytochrome c molten globule.
    Colón W; Roder H
    Nat Struct Biol; 1996 Dec; 3(12):1019-25. PubMed ID: 8946855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The folding energy landscape and free energy excitations of cytochrome c.
    Weinkam P; Zimmermann J; Romesberg FE; Wolynes PG
    Acc Chem Res; 2010 May; 43(5):652-60. PubMed ID: 20143816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A common folding mechanism in the cytochrome c family.
    Travaglini-Allocatelli C; Gianni S; Brunori M
    Trends Biochem Sci; 2004 Oct; 29(10):535-41. PubMed ID: 15450608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasticity of the protein folding landscape: switching between on- and off-pathway intermediates.
    Gianni S; Brunori M; Travaglini-Allocatelli C
    Arch Biochem Biophys; 2007 Oct; 466(2):172-6. PubMed ID: 17658452
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytochrome c folding kinetics studied by time-resolved electrospray ionization mass spectrometry.
    Konermann L; Collings BA; Douglas DJ
    Biochemistry; 1997 May; 36(18):5554-9. PubMed ID: 9154939
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ligand exchange during cytochrome c folding.
    Yeh SR; Takahashi S; Fan B; Rousseau DL
    Nat Struct Biol; 1997 Jan; 4(1):51-6. PubMed ID: 8989324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein folding intermediates and pathways studied by hydrogen exchange.
    Englander SW
    Annu Rev Biophys Biomol Struct; 2000; 29():213-38. PubMed ID: 10940248
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly nonexponential kinetics in the early-phase refolding of proteins at low temperatures.
    Saigo S; Shibayama N
    Biochemistry; 2003 Aug; 42(32):9669-76. PubMed ID: 12911308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Submillisecond protein folding kinetics studied by ultrarapid mixing.
    Chan CK; Hu Y; Takahashi S; Rousseau DL; Eaton WA; Hofrichter J
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1779-84. PubMed ID: 9050855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.